Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_6_a4, author = {U. Andrews and D. I. Dushenin and C. Hill and J. F. Knight and A. G. Melnikov}, title = {Comparing classes of finite sums}, journal = {Algebra i logika}, pages = {748--768}, publisher = {mathdoc}, volume = {54}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a4/} }
TY - JOUR AU - U. Andrews AU - D. I. Dushenin AU - C. Hill AU - J. F. Knight AU - A. G. Melnikov TI - Comparing classes of finite sums JO - Algebra i logika PY - 2015 SP - 748 EP - 768 VL - 54 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2015_54_6_a4/ LA - ru ID - AL_2015_54_6_a4 ER -
U. Andrews; D. I. Dushenin; C. Hill; J. F. Knight; A. G. Melnikov. Comparing classes of finite sums. Algebra i logika, Tome 54 (2015) no. 6, pp. 748-768. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a4/
[1] H. Friedman, L. Stanley, “On Borel reducibility theory for classes of computable structures”, J. Symb. Log., 54:3 (1989), 894–914 | DOI | Zbl
[2] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR | Zbl
[3] E. B. Fokina, J. F. Knight, A. Melnikov, S. M. Quinn, C. M. Safranski, “Classes of Ulm type and coding rank-homogeneous trees in other structures”, J. Symb. Log., 76:3 (2011), 846–869 | DOI | MR | Zbl
[4] J. F. Knight, S. Miller, M. Vanden Boom, “Turing computable embeddings”, J. Symb. Log., 72:3 (2007), 901–918 | DOI | Zbl
[5] C. Maher, On embeddings of computable structures, classes of structures, and computable isomorphism, PhD Thesis, Univ. Notre Dame, 2009
[6] E. B. Fokina, S.-D. Friedman, “On $\Sigma^1_1$ equivalence relations over the natural numbers”, Math. Log. Q., 58:1/2 (2012), 113–124 | DOI | MR | Zbl
[7] E. B. Fokina, S.-D. Friedman, V. Harizanov, J. F. Knight, C. McCoy, A. Montalbán, “Isomorphism relations on computable structures”, J. Symb. Log., 77:1 (2012), 122–132 | DOI | MR | Zbl
[8] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl
[9] V. Kalvert, V. S. Kharizanova, D. F. Nait, S. Miller, “Indeksnye mnozhestva vychislimykh modelei”, Algebra i logika, 45:5 (2006), 538–574 | MR | Zbl
[10] H. Becker, “Isomorphism of computable structures and Vaught's Conjecture”, J. Symb. Log., 78:4 (2013), 1328–1344 | DOI | MR | Zbl
[11] A. Montalbán, A computability theoretic equivalent to Vaught's Conjecture, Preprint
[12] I. Kaplansky, Infinite abelian groups, Univ. Michigan Publ. Math., 2, Univ. Michigan Press, Ann Arbor, 1954 | MR | Zbl