Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_6_a2, author = {R. D. Dimitrov and V. Harizanov}, title = {Orbits of maximal vector spaces}, journal = {Algebra i logika}, pages = {680--732}, publisher = {mathdoc}, volume = {54}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_6_a2/} }
R. D. Dimitrov; V. Harizanov. Orbits of maximal vector spaces. Algebra i logika, Tome 54 (2015) no. 6, pp. 680-732. http://geodesic.mathdoc.fr/item/AL_2015_54_6_a2/
[1] A. I. Maltsev, “O rekursivnykh abelevykh gruppakh”, Dokl. AN SSSR, 146:5 (1962), 1009–1012 | Zbl
[2] J. C. E. Dekker, “Countable vector spaces with recursive operations. I”, J. Symb. Log., 34 (1969), 363–387 | DOI | MR | Zbl
[3] G. Metakides, A. Nerode, “Recursively enumerable vector spaces”, Ann. Math. Logic, 11 (1977), 147–171 | DOI | MR | Zbl
[4] R. G. Downey, J. B. Remmel, “Computable algebras and closure systems: coding properties”, Handbook of recursive mathematics, v. 2, Stud. Logic Found. Math., 139, Recursive algebra, analysis and combinatorics, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 997–1039 | MR
[5] A. S. Morozov, “Groups of computable automorphisms”, Handbook of recursive mathematics, v. 1, Stud. Log. Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 311–345 | DOI | MR | Zbl
[6] A. Nerode, J. B. Remmel, “A survey of lattices of r.e. substructures”, Recursion Theory, Proc. Symp. Pure Math., 42, eds. A. Nerode, R. Shore, Am. Math. Soc., Providence, RI, 1985, 323–375 | DOI | MR | Zbl
[7] C. J. Conidis, “Infinite dimensional proper subspaces of computable vector spaces”, J. Algebra, 406 (2014), 346–375 | DOI | MR | Zbl
[8] R. G. Downey, D. R. Hirschfeldt, A. M. Kach, S. Lempp, J. R. Mileti, A. Montalbán, “Subspaces of computable vector spaces”, J. Algebra, 314:2 (2007), 888–894 | DOI | MR | Zbl
[9] R. M. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication”, J. Symb. Log., 23:3 (1958), 309–316 | DOI | MR
[10] D. A. Martin, “Classes of recursively enumerable sets and degree of unsolvability”, Z. Math. Logik Grundlagen Math., 12:4 (1966), 295–310 | DOI | MR | Zbl
[11] C. F. Kent, “Constructive analogues of the group of permutations of the natural numbers”, Trans. Am. Math. Soc., 104:2 (1962), 347–362 | DOI | MR | Zbl
[12] R. I. Soare, Recursively enumerable sets and degrees, Perspect. Math. Log., Omega Series, Springer-Verlag, Heidelberg a.o., 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000 | DOI | MR | Zbl | MR
[13] R. I. Soare, “Automorphisms of the lattice of recursively enumerable sets. I: Maximal sets”, Ann. Math. (2), 100 (1974), 80–120 | DOI | MR | Zbl
[14] I. Kalantari, A. Retzlaff, “Maximal vector spaces under automorphisms of the lattice of recursively enumerable vector spaces”, J. Symb. Log., 42 (1977), 481–491 | DOI | MR
[15] J. Remmel, “On r.e. and co-r.e. vector spaces with nonextendible bases”, J. Symb. Log., 45 (1980), 20–34 | DOI | MR | Zbl
[16] D. R. Guichard, “Automorphisms of substructure lattices in recursive algebra”, Ann. Pure Appl. Logic, 25 (1983), 47–58 | DOI | MR | Zbl
[17] G. R. Hird, “Recursive properties of relations on models”, Ann. Pure Appl. Logic, 63:3 (1993), 241–269 | DOI | MR | Zbl
[18] R. G. Downey, G. R. Hird, “Automorphisms of supermaximal subspaces”, J. Symb. Log., 50 (1985), 1–9 | DOI | MR | Zbl
[19] R. D. Dimitrov, “Quasimaximality and principal filters isomorphism between $\mathcal E^*$ and $\mathcal L^*(V_\infty)$”, Arch. Math. Logic, 43:3 (2004), 415–424 | DOI | MR | Zbl
[20] R. D. Dimitrov, “A class of $\Sigma^0_3$ modular lattices embeddable as principal filters in $\mathcal L^*(V_\infty)$”, Arch. Math. Logic, 47:2 (2008), 111–132 | DOI | MR | Zbl
[21] R. Dimitrov, V. Harizanov, R. Miller, K. J. Mourad, “Isomorphisms of nonstandard fields and Ash's conjecture”, Language, life, limits, Proc. 10th conference on computability in Europe CiE 2014 (Budapest, Hungary, June 23–27, 2014), Lect. Notes Comput. Sci., 8493, eds. A. Beckmann et al., Springer, Berlin, 2014, 143–152 | DOI | MR | Zbl
[22] R. D. Dimitrov, “Cohesive powers of computable structures”, Annuaire Univ. Sofia, Fac. Math. Inform., 99 (2009), 193–201 | MR
[23] S. B. Cooper, Computability theory, Chapman Hall/CRC Math. Ser., Chapman and Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[24] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[25] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[26] R. D. Dimitrov, “Extensions of certain partial automorphisms of $\mathcal L^*(V_\infty)$”, Annuaire Univ. Sofia, Fac. Math. Inform., 99 (2009), 183–191 | MR
[27] E. Artin, Geometric algebra, Intersci. tracts pure appl. math., 3, Intersci. Publ., Inc., New York; Intersci. Publ. Ltd., London, 1957 | MR | Zbl