Recognizing $L_3(4)$ by the set of element orders in the class of all groups
Algebra i logika, Tome 54 (2015) no. 4, pp. 439-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite simple group $L_3(4)$ is characterized up to isomorphism by its set of element orders in the class of all groups.
Keywords: periodic group, locally finite group.
@article{AL_2015_54_4_a1,
     author = {A. S. Mamontov and E. Jabara},
     title = {Recognizing $L_3(4)$ by the set of element orders in the class of all groups},
     journal = {Algebra i logika},
     pages = {439--443},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a1/}
}
TY  - JOUR
AU  - A. S. Mamontov
AU  - E. Jabara
TI  - Recognizing $L_3(4)$ by the set of element orders in the class of all groups
JO  - Algebra i logika
PY  - 2015
SP  - 439
EP  - 443
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_4_a1/
LA  - ru
ID  - AL_2015_54_4_a1
ER  - 
%0 Journal Article
%A A. S. Mamontov
%A E. Jabara
%T Recognizing $L_3(4)$ by the set of element orders in the class of all groups
%J Algebra i logika
%D 2015
%P 439-443
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_4_a1/
%G ru
%F AL_2015_54_4_a1
A. S. Mamontov; E. Jabara. Recognizing $L_3(4)$ by the set of element orders in the class of all groups. Algebra i logika, Tome 54 (2015) no. 4, pp. 439-443. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a1/

[1] D. V. Lytkina, V. D. Mazurov, “Groups with given element orders”, Zhurn. SFU. Ser. matem. i fiz., 7:2 (2014), 191–203 | MR

[2] A. Kh. Zhurtov, V. D. Mazurov, “Raspoznavanie prostykh grupp $L_2(2^m)$ v klasse vsekh grupp”, Sib. matem. zh., 40:1 (1999), 75–78 | MR | Zbl

[3] D. V. Lytkina, A. A. Kuznetsov, “Recognizability by spectrum of the group $L_2(7)$ in the class of all groups”, Sib. elektron. matem. izv., 4 (2007), 136–140 | MR | Zbl

[4] E. Jabara, D. Lytkina, A. Mamontov, “Recognizing M10 by spectrum in the class of all groups”, Int. J. Algebra Comput., 24:2 (2014), 113–119 | DOI | MR | Zbl

[5] W. Shi, “A characterization of some projective special linear groups”, J. Math., Wuhan Univ., 5 (1985), 191–200 | MR | Zbl

[6] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, vers. 4.7.8, , 2015 http://www.gap-system.org

[7] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493

[8] V. P. Shunkov, “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR

[9] V. P. Shunkov, $M_p$-gruppy, Nauka, M., 1990 | MR | Zbl

[10] V. D. Mazurov, “O gruppakh perioda 60 s zadannymi poryadkami elementov”, Algebra i logika, 39:3 (2000), 329–346 | MR | Zbl

[11] A. Kh. Zhurtov, V. D. Mazurov, “Lokalnaya konechnost nekotorykh grupp s zadannymi poryadkami elementov”, Vladikavk. matem. zh., 11:4 (2009), 11–15 | MR | Zbl

[12] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, 4-e izd., pererab., Nauka, Fizmatlit, M., 1996 | MR