Uniformization in superstructures over some extensions of~$\mathbb R$
Algebra i logika, Tome 54 (2015) no. 4, pp. 431-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniformization theorem for $\Sigma$-predicates in a hereditarily finite superstructure over the real exponential field proved in [Algebra i Logika, 53, No. 1, 3–14 (2014)] is generalized to the case of an arbitrary $\Sigma$-predicate $P\subseteq\mathbb{HW(R}_{exp})\times\mathbb{HW(R}_{exp})$.
Keywords: hereditarily finite list superstructure over real exponential field, uniformization theorem.
@article{AL_2015_54_4_a0,
     author = {S. A. Aleksandrova},
     title = {Uniformization in superstructures over some extensions of~$\mathbb R$},
     journal = {Algebra i logika},
     pages = {431--438},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/}
}
TY  - JOUR
AU  - S. A. Aleksandrova
TI  - Uniformization in superstructures over some extensions of~$\mathbb R$
JO  - Algebra i logika
PY  - 2015
SP  - 431
EP  - 438
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/
LA  - ru
ID  - AL_2015_54_4_a0
ER  - 
%0 Journal Article
%A S. A. Aleksandrova
%T Uniformization in superstructures over some extensions of~$\mathbb R$
%J Algebra i logika
%D 2015
%P 431-438
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/
%G ru
%F AL_2015_54_4_a0
S. A. Aleksandrova. Uniformization in superstructures over some extensions of~$\mathbb R$. Algebra i logika, Tome 54 (2015) no. 4, pp. 431-438. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/

[1] S. A. Aleksandrova, “Problema uniformizatsii dlya $\Sigma$-predikatov v nasledstvenno konechnoi spisochnoi nadstroike nad polem deistvitelnykh chisel s eksponentoi”, Algebra i logika, 53:1 (2014), 3–14 | MR | Zbl

[2] C. S. Goncharov, D. I. Sviridenko, “$\Sigma$-programmirovanie”, Logiko-matematicheskie osnovy problemy MOZ, Vychisl. sist., 107, In-t matem. SO RAN, Novosibirsk, 1985, 3–29 | MR

[3] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Am. Math. Soc., 9:4 (1996), 1051–1094 | DOI | MR | Zbl

[4] A. G. Khovanskii, “Ob odnom klasse sistem transtsendentnykh uravnenii”, Dokl. AN SSSR, 255:4 (1980), 804–807 | MR

[5] A. Macintyre, A. Wilkie, “On the decidability of the real exponential field”, Kreiseliana: about and around Georg Kreisel, ed. P. Odifreddi, A K Peters, Wellesley, MA, 1996, 441–467 | MR | Zbl

[6] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, NII MIOO NGU, Novosibirsk, Nauchnaya kniga, 1996 | MR

[7] M. V. Korovina, “Obobschënnaya vychislimost funktsii na veschestvennykh chislakh”, Logicheskie metody v programmirovanii, Vychisl. sist., 133, 1990, 38–67 | MR | Zbl

[8] A. Gabrielov, N. Vorobjov, “Complexity of cylindrical decompositions of sub-Pfaffian sets”, J. Pure Appl. Algebra, 164:1/2 (2001), 179–197 | DOI | MR | Zbl