Uniformization in superstructures over some extensions of $\mathbb R$
Algebra i logika, Tome 54 (2015) no. 4, pp. 431-438
Voir la notice de l'article provenant de la source Math-Net.Ru
The uniformization theorem for $\Sigma$-predicates in a hereditarily finite superstructure over the real exponential field proved in [Algebra i Logika, 53, No. 1, 3–14 (2014)] is generalized to the case of an arbitrary $\Sigma$-predicate $P\subseteq\mathbb{HW(R}_{exp})\times\mathbb{HW(R}_{exp})$.
Keywords:
hereditarily finite list superstructure over real exponential field, uniformization theorem.
@article{AL_2015_54_4_a0,
author = {S. A. Aleksandrova},
title = {Uniformization in superstructures over some extensions of~$\mathbb R$},
journal = {Algebra i logika},
pages = {431--438},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/}
}
S. A. Aleksandrova. Uniformization in superstructures over some extensions of $\mathbb R$. Algebra i logika, Tome 54 (2015) no. 4, pp. 431-438. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/