Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2015_54_4_a0, author = {S. A. Aleksandrova}, title = {Uniformization in superstructures over some extensions of~$\mathbb R$}, journal = {Algebra i logika}, pages = {431--438}, publisher = {mathdoc}, volume = {54}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/} }
S. A. Aleksandrova. Uniformization in superstructures over some extensions of~$\mathbb R$. Algebra i logika, Tome 54 (2015) no. 4, pp. 431-438. http://geodesic.mathdoc.fr/item/AL_2015_54_4_a0/
[1] S. A. Aleksandrova, “Problema uniformizatsii dlya $\Sigma$-predikatov v nasledstvenno konechnoi spisochnoi nadstroike nad polem deistvitelnykh chisel s eksponentoi”, Algebra i logika, 53:1 (2014), 3–14 | MR | Zbl
[2] C. S. Goncharov, D. I. Sviridenko, “$\Sigma$-programmirovanie”, Logiko-matematicheskie osnovy problemy MOZ, Vychisl. sist., 107, In-t matem. SO RAN, Novosibirsk, 1985, 3–29 | MR
[3] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Am. Math. Soc., 9:4 (1996), 1051–1094 | DOI | MR | Zbl
[4] A. G. Khovanskii, “Ob odnom klasse sistem transtsendentnykh uravnenii”, Dokl. AN SSSR, 255:4 (1980), 804–807 | MR
[5] A. Macintyre, A. Wilkie, “On the decidability of the real exponential field”, Kreiseliana: about and around Georg Kreisel, ed. P. Odifreddi, A K Peters, Wellesley, MA, 1996, 441–467 | MR | Zbl
[6] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, NII MIOO NGU, Novosibirsk, Nauchnaya kniga, 1996 | MR
[7] M. V. Korovina, “Obobschënnaya vychislimost funktsii na veschestvennykh chislakh”, Logicheskie metody v programmirovanii, Vychisl. sist., 133, 1990, 38–67 | MR | Zbl
[8] A. Gabrielov, N. Vorobjov, “Complexity of cylindrical decompositions of sub-Pfaffian sets”, J. Pure Appl. Algebra, 164:1/2 (2001), 179–197 | DOI | MR | Zbl