On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.~II
Algebra i logika, Tome 54 (2015) no. 3, pp. 326-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of a group $G$. We say that $H$ satisfies the $\Pi$-property in $G$ if $|G/K:N_{G/K}(HK/K\cap L/K)|$ is a $\pi(HK/K\cap L/K)$-number for any chief factor $L/K$ of $G$. If there is a subnormal supplement $T$ of $H$ in $G$ such that $H\cap T\le I\le H$ for some subgroup $I$ satisfying the $\Pi$-property in $G$, then $H$ is said to be $\Pi$-normal in $G$. Using these properties that hold for some subgroups, we derive new $p$-nilpotency criteria for finite groups.
Keywords: finite group, $\Pi$-property, $\Pi$-normal subgroup, $p$-nilpotency.
@article{AL_2015_54_3_a2,
     author = {B. Li and T. Foguel},
     title = {On $\Pi$-property and $\Pi$-normality of subgroups of finite {groups.~II}},
     journal = {Algebra i logika},
     pages = {326--350},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a2/}
}
TY  - JOUR
AU  - B. Li
AU  - T. Foguel
TI  - On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.~II
JO  - Algebra i logika
PY  - 2015
SP  - 326
EP  - 350
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a2/
LA  - ru
ID  - AL_2015_54_3_a2
ER  - 
%0 Journal Article
%A B. Li
%A T. Foguel
%T On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.~II
%J Algebra i logika
%D 2015
%P 326-350
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a2/
%G ru
%F AL_2015_54_3_a2
B. Li; T. Foguel. On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.~II. Algebra i logika, Tome 54 (2015) no. 3, pp. 326-350. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a2/

[1] W. Guo, The theory of classes of groups, Math. Appl. (Dordrecht), 505, Kluwer Academic Publishers, Dordrecht; Science Press, Beijing, 2000 | MR | Zbl

[2] B. Huppert, Endliche Gruppen, v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl

[3] T. Foguel, “On seminormal subgroups”, J. Algebra, 165:3 (1994), 633–635 | DOI | MR | Zbl

[4] X. Su, “Seminormal subgroups of finite groups”, J. Math., Wuhan Univ., 8:1 (1988), 5–10 | MR

[5] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “Sufficient conditions for supersolubility of finite groups”, J. Pure Appl. Algebra, 127:2 (1998), 113–118 | DOI | MR | Zbl

[6] Venbin Go, K. P. Sham, A. N. Skiba, “$X$-perestanovochnye maksimalnye podgruppy silovskikh podgrupp konechnykh grupp”, Ukr. matem. zh., 58:10 (2006), 1299–1309 | MR

[7] Y. Wang, “$C$-normality groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl

[8] A. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315:1 (2007), 192–209 | DOI | MR | Zbl

[9] B. Li, “On $\Pi$-property and $\Pi$-normality of subgroups of finite groups”, J. Algebra, 334:1 (2011), 321–337 | DOI | MR | Zbl

[10] A. Y. Alsheik Ahmad, J. J. Jaraden, A. N. Skiba, “On $\mathfrak U_c$-normal subgroups of finite groups”, Algebra Colloq., 14:1 (2007), 25–36 | DOI | MR | Zbl

[11] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980 | MR | Zbl

[12] B. Huppert, N. Blackburn, Finite groups, v. III, Grundlehren Math. Wiss., 243, Springer-Verlag, Berlin a.o., 1982 | MR | Zbl

[13] M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ. House, Passaic, New Jersey, USA, 1982 | MR | Zbl

[14] J. G. Thompson, “Normal $p$-complements for finite groups”, Math. Z., 72 (1959/1960), 332–354 | DOI | MR

[15] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. Lond. Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl

[16] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, Walter de Gruyter, Berlin etc., 1992 | MR

[17] L. Dornhoff, “$M$-groups and 2-groups”, Math. Z., 100 (1967), 226–256 | DOI | MR | Zbl

[18] B. Li, A. Skiba, “New characterizations of finite supersoluble groups”, Sci. China Ser. A, 51:5 (2008), 827–841 | DOI | MR | Zbl

[19] Z. Han, “On $s$-semipermutable subgroups of finite groups and $p$-nilpotency”, Proc. Indian Acad. Sci., Math. Sci., 120:2 (2010), 141–148 | DOI | MR | Zbl

[20] L. Wang, Y. Wang, “On $s$-semipermutable maximal and minimal subgroups of Sylow $p$-subgroups of finite groups”, Commun. Algebra, 34:1 (2006), 143–149 | DOI | MR | Zbl