Ideals without minimal elements in Rogers semilattices
Algebra i logika, Tome 54 (2015) no. 3, pp. 305-314

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a criterion for the existence of a minimal numbering, which is reducible to a given numbering of an arbitrary set. The criterion is used to show that, for any infinite $A$-computable family $F$ of total functions, where $\varnothing'\le_TA$, the Rogers semilattice $\mathcal R_A(F)$ of $A$-computable numberings for $F$ contains an ideal without minimal elements.
Keywords: minimal numbering, $A$-computable numbering, Rogers semilattice, ideal.
@article{AL_2015_54_3_a0,
     author = {A. A. Issakhov},
     title = {Ideals without minimal elements in {Rogers} semilattices},
     journal = {Algebra i logika},
     pages = {305--314},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/}
}
TY  - JOUR
AU  - A. A. Issakhov
TI  - Ideals without minimal elements in Rogers semilattices
JO  - Algebra i logika
PY  - 2015
SP  - 305
EP  - 314
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/
LA  - ru
ID  - AL_2015_54_3_a0
ER  - 
%0 Journal Article
%A A. A. Issakhov
%T Ideals without minimal elements in Rogers semilattices
%J Algebra i logika
%D 2015
%P 305-314
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/
%G ru
%F AL_2015_54_3_a0
A. A. Issakhov. Ideals without minimal elements in Rogers semilattices. Algebra i logika, Tome 54 (2015) no. 3, pp. 305-314. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/