Ideals without minimal elements in Rogers semilattices
Algebra i logika, Tome 54 (2015) no. 3, pp. 305-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a criterion for the existence of a minimal numbering, which is reducible to a given numbering of an arbitrary set. The criterion is used to show that, for any infinite $A$-computable family $F$ of total functions, where $\varnothing'\le_TA$, the Rogers semilattice $\mathcal R_A(F)$ of $A$-computable numberings for $F$ contains an ideal without minimal elements.
Keywords: minimal numbering, $A$-computable numbering, Rogers semilattice, ideal.
@article{AL_2015_54_3_a0,
     author = {A. A. Issakhov},
     title = {Ideals without minimal elements in {Rogers} semilattices},
     journal = {Algebra i logika},
     pages = {305--314},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/}
}
TY  - JOUR
AU  - A. A. Issakhov
TI  - Ideals without minimal elements in Rogers semilattices
JO  - Algebra i logika
PY  - 2015
SP  - 305
EP  - 314
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/
LA  - ru
ID  - AL_2015_54_3_a0
ER  - 
%0 Journal Article
%A A. A. Issakhov
%T Ideals without minimal elements in Rogers semilattices
%J Algebra i logika
%D 2015
%P 305-314
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/
%G ru
%F AL_2015_54_3_a0
A. A. Issakhov. Ideals without minimal elements in Rogers semilattices. Algebra i logika, Tome 54 (2015) no. 3, pp. 305-314. http://geodesic.mathdoc.fr/item/AL_2015_54_3_a0/

[1] C. C. Goncharov, A. Sorbi, “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[3] S. A. Badaev, S. S. Goncharov, “Obobschënno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[4] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[5] Yu. L. Ershov, “Numeratsii semeistv obscherekursivnykh funktsii”, Sib. matem. zh., 8:5 (1967), 1015–1025

[6] S. S. Marchenkov, “O vychislimykh numeratsiyakh semeistv obscherekursivnykh funktsii”, Algebra i logika, 11:5 (1972), 588–607

[7] As. A. Isakhov, “Numeratsii Fridberga semeistva vsyudu opredelennykh funktsii v arifmeticheskoi ierarkhii”, Izv. Nats. akad. n. Resp. Kazakhstan. Ser. fiz.-mat., 293:1 (2014), 8–11

[8] As. A. Isakhov, “Nekotorye svoistva vychislimykh numeratsii semeistv vsyudu opredelennykh funktsii v arifmeticheskoi ierarkhii”, Vestnik KazNU. Ser. matem., mekh., inf., 81:2 (2014), 62–65

[9] A. Issakhov, “Some computable numberings of the families of total functions in the arithmetical hierarchy”, Bull. Symbolic Logic, 20:2 (2014), 230–231

[10] A. B. Khutoretskii, “Dve teoremy suschestvovaniya dlya vychislimykh numeratsii”, Algebra i logika, 8:4 (1969), 483–492

[11] V. V. Vyugin, “O nekotorykh primerakh verkhnikh polureshëtok vychislimykh numeratsii”, Algebra i logika, 12:5 (1973), 512–529

[12] S. A. Badaev, “Minimalnye numeratsii”, Matematicheskaya logika i teoriya algoritmov, Trudy in-ta matem. SO RAN, 25, 1993, 3–34 | MR | Zbl

[13] S. A. Badaev, A. A. Isakhov, “Ob $A$-vychislimykh numeratsiyakh”, Tez. dokl. mezhd. konf. Maltsevskie chteniya, posvyasch. 75-letiyu Yu. L. Ershova (Novosibirsk, 3–7 maya 2015 g.), Novosibirsk, 2015, 61