$\mathbb Q$-completions of free solvable groups
Algebra i logika, Tome 54 (2015) no. 2, pp. 193-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be complete if, for any natural $n$ and any element $g\in G$, an equation $x^n=g$ is solvable in $G$. If every such equation in the group has at most one solution, then we say that the condition for uniqueness of root extraction is satisfied. A complete group with unique root extraction can be treated as a $\mathbb Q$-power group since it admits an operation of raising an element to any rational power. Let a group $G$ be embedded in a complete group $H$ with unique root extraction, and let $H$ be generated as a $\mathbb Q$-group by the set $G$. Then $H$ is called a $\mathbb Q$-completion of $G$. We prove that every $m$-rigid group $G$ is independently embedded in a complete $m$-rigid group. Under the specified condition for independence of an embedding, the $\mathbb Q$-completion of the group $G$ in the class of rigid groups is defined uniquely up to $G$-isomorphism. It is stated that the centralizer of any element of an independent $\mathbb Q$-completion of a free solvable group which does not belong to the last nontrivial member of a rigid series of this completion is isomorphic to the additive group of a field $\mathbb Q$ of rational numbers.
Mots-clés : $m$-rigid group
Keywords: free solvable group, $\mathbb Q$-completion.
@article{AL_2015_54_2_a3,
     author = {Ch. K. Gupta and N. S. Romanovskii},
     title = {$\mathbb Q$-completions of free solvable groups},
     journal = {Algebra i logika},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a3/}
}
TY  - JOUR
AU  - Ch. K. Gupta
AU  - N. S. Romanovskii
TI  - $\mathbb Q$-completions of free solvable groups
JO  - Algebra i logika
PY  - 2015
SP  - 193
EP  - 211
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a3/
LA  - ru
ID  - AL_2015_54_2_a3
ER  - 
%0 Journal Article
%A Ch. K. Gupta
%A N. S. Romanovskii
%T $\mathbb Q$-completions of free solvable groups
%J Algebra i logika
%D 2015
%P 193-211
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a3/
%G ru
%F AL_2015_54_2_a3
Ch. K. Gupta; N. S. Romanovskii. $\mathbb Q$-completions of free solvable groups. Algebra i logika, Tome 54 (2015) no. 2, pp. 193-211. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a3/

[1] A. I. Maltsev, “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR. Ser. matem., 13:3 (1949), 201–212 | MR | Zbl

[2] Yu. V. Kuzmin, “Mnogoobrazie metabelevykh $D$-grupp”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 765–788 | MR | Zbl

[3] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[4] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[5] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[6] A. G. Myasnikov, N. S. Romanovskii, “Logicheskie aspekty teorii delimykh zhestkikh grupp”, DAN, 459:2 (2014), 154–155 | Zbl

[7] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[8] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498 | Zbl

[9] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[10] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[11] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new K-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | MR | Zbl

[12] J. S. Wilson, Profinite groups, Lond. Math. Soc. Monogr., New Ser., 19, Clarendon Press, Oxford, 1998 | Zbl

[13] V. N. Remeslennikov, “Teoremy vlozheniya dlya prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 399–417 | MR | Zbl

[14] N. S. Romanovskii, “O vlozheniyakh Shmelkina dlya abstraktnykh i prokonechnykh grupp”, Algebra i logika, 38:5 (1999), 598–612 | MR

[15] N. S. Romanovskii, “Obobschennaya teorema o svobode dlya pro-$p$-grupp”, Sib. matem. zh., 27:2 (1986), 154–170 | MR