The branching theorem and computable categoricity in the Ershov hierarchy
Algebra i logika, Tome 54 (2015) no. 2, pp. 137-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Computable categoricity in the Ershov hierarchy is studied. We consider $F_a$- and $G_a$-categorical structures. These were introduced by B. Khoussainov, F. Stephan, and Y. Yang for $a$, which is a notation for a constructive ordinal. A generalization of the branching theorem is proved for $F_a$-categorical structures. As a consequence we obtain a description of $F_a$-categorical structures for classes of Boolean algebras and Abelian $p$-groups. Furthermore, it is shown that the branching theorem cannot be generalized to $G_a$-categorical structures.
Keywords: computable categoricity, Ershov hierarchy, $F_a$-categoricity, $G_a$-categoricity, branching structure.
@article{AL_2015_54_2_a0,
     author = {N. A. Bazhenov},
     title = {The branching theorem and computable categoricity in the {Ershov} hierarchy},
     journal = {Algebra i logika},
     pages = {137--157},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - The branching theorem and computable categoricity in the Ershov hierarchy
JO  - Algebra i logika
PY  - 2015
SP  - 137
EP  - 157
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/
LA  - ru
ID  - AL_2015_54_2_a0
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T The branching theorem and computable categoricity in the Ershov hierarchy
%J Algebra i logika
%D 2015
%P 137-157
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/
%G ru
%F AL_2015_54_2_a0
N. A. Bazhenov. The branching theorem and computable categoricity in the Ershov hierarchy. Algebra i logika, Tome 54 (2015) no. 2, pp. 137-157. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/