The branching theorem and computable categoricity in the Ershov hierarchy
Algebra i logika, Tome 54 (2015) no. 2, pp. 137-157
Voir la notice de l'article provenant de la source Math-Net.Ru
Computable categoricity in the Ershov hierarchy is studied. We consider $F_a$- and $G_a$-categorical structures. These were introduced by B. Khoussainov, F. Stephan, and Y. Yang for $a$, which is a notation for a constructive ordinal. A generalization of the branching theorem is proved for $F_a$-categorical structures. As a consequence we obtain a description of $F_a$-categorical structures for classes of Boolean algebras and Abelian $p$-groups. Furthermore, it is shown that the branching theorem cannot be generalized to $G_a$-categorical structures.
Keywords:
computable categoricity, Ershov hierarchy, $F_a$-categoricity, $G_a$-categoricity, branching structure.
@article{AL_2015_54_2_a0,
author = {N. A. Bazhenov},
title = {The branching theorem and computable categoricity in the {Ershov} hierarchy},
journal = {Algebra i logika},
pages = {137--157},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/}
}
N. A. Bazhenov. The branching theorem and computable categoricity in the Ershov hierarchy. Algebra i logika, Tome 54 (2015) no. 2, pp. 137-157. http://geodesic.mathdoc.fr/item/AL_2015_54_2_a0/