Projections of Galois rings
Algebra i logika, Tome 54 (2015) no. 1, pp. 16-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ and $R^\varphi$ be associative rings with isomorphic subring lattices and $\varphi$ be a lattice isomorphism (a projection) of the ring $R$ onto the ring $R^\varphi$. We call $R^\varphi$ the projective image of a ring $R$ and call the ring $R$ itself the projective preimage of a ring $R^\varphi$. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring $GR(p^n,m)$ isomorphic to the factor ring $K[x]/(f(x))$, where $K=Z/p^nZ$, $p$ is a prime, $f(x)$ is a polynomial of degree $m$ irreducible over $K$, and $(f(x))$ is a principal ideal generated by the polynomial $f(x)$ in the ring $K[x]$. Properties of the lattice of subrings of a Galois ring depend on values of numbers $n$ and $m$. A subring lattice $L$ of $GR(p^n,m)$ has the simplest structure for $m=1$ ($L$ is a chain) and for $n=1$ ($L$ is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following: THEOREM. Let $R=GR(p^n,q^m)$, where $n>1$ and $m>1$. Then $R^\varphi\cong R$.
Keywords: Galois rings, lattice isomorphisms of associative rings.
@article{AL_2015_54_1_a1,
     author = {S. S. Korobkov},
     title = {Projections of {Galois} rings},
     journal = {Algebra i logika},
     pages = {16--33},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of Galois rings
JO  - Algebra i logika
PY  - 2015
SP  - 16
EP  - 33
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/
LA  - ru
ID  - AL_2015_54_1_a1
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of Galois rings
%J Algebra i logika
%D 2015
%P 16-33
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/
%G ru
%F AL_2015_54_1_a1
S. S. Korobkov. Projections of Galois rings. Algebra i logika, Tome 54 (2015) no. 1, pp. 16-33. http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/