Projections of Galois rings
Algebra i logika, Tome 54 (2015) no. 1, pp. 16-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ and $R^\varphi$ be associative rings with isomorphic subring lattices and $\varphi$ be a lattice isomorphism (a projection) of the ring $R$ onto the ring $R^\varphi$. We call $R^\varphi$ the projective image of a ring $R$ and call the ring $R$ itself the projective preimage of a ring $R^\varphi$. We study lattice isomorphisms of Galois rings. By a Galois ring we mean a ring $GR(p^n,m)$ isomorphic to the factor ring $K[x]/(f(x))$, where $K=Z/p^nZ$, $p$ is a prime, $f(x)$ is a polynomial of degree $m$ irreducible over $K$, and $(f(x))$ is a principal ideal generated by the polynomial $f(x)$ in the ring $K[x]$. Properties of the lattice of subrings of a Galois ring depend on values of numbers $n$ and $m$. A subring lattice $L$ of $GR(p^n,m)$ has the simplest structure for $m=1$ ($L$ is a chain) and for $n=1$ ($L$ is distributive). It turned out that only in these cases there are examples of projections of Galois ring onto rings that are not Galois rings. We prove the following: THEOREM. Let $R=GR(p^n,q^m)$, where $n>1$ and $m>1$. Then $R^\varphi\cong R$.
Keywords: Galois rings, lattice isomorphisms of associative rings.
@article{AL_2015_54_1_a1,
     author = {S. S. Korobkov},
     title = {Projections of {Galois} rings},
     journal = {Algebra i logika},
     pages = {16--33},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/}
}
TY  - JOUR
AU  - S. S. Korobkov
TI  - Projections of Galois rings
JO  - Algebra i logika
PY  - 2015
SP  - 16
EP  - 33
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/
LA  - ru
ID  - AL_2015_54_1_a1
ER  - 
%0 Journal Article
%A S. S. Korobkov
%T Projections of Galois rings
%J Algebra i logika
%D 2015
%P 16-33
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/
%G ru
%F AL_2015_54_1_a1
S. S. Korobkov. Projections of Galois rings. Algebra i logika, Tome 54 (2015) no. 1, pp. 16-33. http://geodesic.mathdoc.fr/item/AL_2015_54_1_a1/

[1] B. R. McDonald, Finite rings with identity, Marcel Dekker, New York, 1974 | MR | Zbl

[2] S. S. Korobkov, “Reshëtochnye izomorfizmy konechnykh kolets bez nilpotentnykh elementov”, Izv. Ural. gos. un-ta, 2002, no. 22, Matem. i mekhan. Kompyuter. n., vyp. 4, 81–93 | MR | Zbl

[3] P. A. Freidman, S. S. Korobkov, “Assotsiativnye koltsa i ikh reshëtki podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Ural. gos. ped. un-t, Ekaterinburg, 1998, 4–45

[4] T. J. Laffey, “On commutative subrings of infinite rings”, Bull Lond. Math. Soc., 4:1 (1972), 3–5 | DOI | MR | Zbl

[5] D. W. Barnes, “Lattice isomorphisms of associative algebras”, J. Aust.Math. Soc., 6:1 (1966), 106–121 | DOI | MR | Zbl

[6] S. S. Korobkov, E. M. Svinina, V. D. Smirnov, Dep. v VINITI, No 1441-90, Sverdl. gos. ped. in-t, Sverdlovsk, 1990, 40 pp.

[7] S. S. Korobkov, “Periodicheskie koltsa s razlozhimymi v pryamoe proizvedenie reshëtkami podkolets”, Issledovanie algebraicheskikh sistem po svoistvam ikh podsistem, Ural. gos. ped. un-t, Ekaterinburg, 1998, 46–57

[8] S. S. Korobkov, “Konechnye koltsa, soderzhaschie v tochnosti dva maksimalnykh podkoltsa”, Izv. vuzov. Matem., 2011, no. 6, 55–62 | MR | Zbl

[9] S. S. Korobkov, “Proektirovaniya periodicheskikh nilkolets”, Izv. vuzov. Matem., 1980, no. 7, 30–38 | MR | Zbl