Generic theories as a~method for approximating elementary theories
Algebra i logika, Tome 53 (2014) no. 6, pp. 779-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2014_53_6_a9,
     author = {A. G. Myasnikov and V. N. Remeslennikov},
     title = {Generic theories as a~method for approximating elementary theories},
     journal = {Algebra i logika},
     pages = {779--789},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a9/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - V. N. Remeslennikov
TI  - Generic theories as a~method for approximating elementary theories
JO  - Algebra i logika
PY  - 2014
SP  - 779
EP  - 789
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a9/
LA  - ru
ID  - AL_2014_53_6_a9
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A V. N. Remeslennikov
%T Generic theories as a~method for approximating elementary theories
%J Algebra i logika
%D 2014
%P 779-789
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a9/
%G ru
%F AL_2014_53_6_a9
A. G. Myasnikov; V. N. Remeslennikov. Generic theories as a~method for approximating elementary theories. Algebra i logika, Tome 53 (2014) no. 6, pp. 779-789. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a9/

[1] K. J. Compton, “The computational complexity of asymptotic problems. I: Partial orders”, Inf. Comput., 78:2 (1988), 108–123 | DOI | MR | Zbl

[2] D. J. Kleitman, B. L. Rothschild, “Asymptotic enumeration of partial orders on a finite set”, Trans. Am. Math. Soc., 205 (1975), 205–220 | DOI | MR | Zbl

[3] I. A. Lavrov, “Effektivnaya neotdelimost mnozhestva tozhdestvenno istinnykh i mnozhestva konechno oproverzhimykh formul nekotorykh elementarnykh teorii”, Algebra i logika, 2:1 (1963), 5–18 | MR | Zbl

[4] R. H. Gilman, Y. Gurevich, A. Miasnikov, “A geometric zero-one law”, J. Symb. Log., 74:3 (2009), 929–938 | DOI | MR | Zbl

[5] A. A. Mischenko, V. N. Remeslennikov, A. V. Treier, “Genericheskie teorii serii konechnykh abelevykh grupp”, Algebra i logika, 53:6 (2014), 722–734

[6] A. Macintyre, “Model completeness”, Handbook of mathematical logic, ed. J. Barwise, North-Holland Publ. Co., Amsterdam, 1977, 80–139 | MR

[7] J. Ax, “The elementary theory of finite fields”, Ann. math., 88:2 (1968), 239–271 | DOI | MR | Zbl

[8] A. A. Mischenko, V. N. Remeslennikov, A. V. Treier, Klassifikatsiya universalnykh teorii abelevykh grupp, Preprint