Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_6_a5, author = {T. R. Nasybullov}, title = {Twisted conjugacy classes in {Chevalley} groups}, journal = {Algebra i logika}, pages = {735--763}, publisher = {mathdoc}, volume = {53}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/} }
T. R. Nasybullov. Twisted conjugacy classes in Chevalley groups. Algebra i logika, Tome 53 (2014) no. 6, pp. 735-763. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/
[1] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR
[2] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, K-Theory, 8:4 (1994), 367–393 | DOI | MR | Zbl
[3] A. Fel'shtyn, D. L. Gonçalves, “Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with F. Dahmani)”, Geom. Dedicata, 146 (2010), 211–223 | DOI | MR | Zbl
[4] G. Levitt, M. Lustig, “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. Éc. Norm. Supér. (4), 33:4 (2000), 507–517 | MR | Zbl
[5] A. L. Felshtyn, “Chislo Raidemaistera lyubogo avtomorfizma gromovskoi giperbolicheskoi gruppy beskonechno”, Zap. nauchn. sem. POMI, 279, 2001, 229–240 | MR | Zbl
[6] A. Fel'shtyn, D. L. Gonçalves, “Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite”, Geometry and dynamics of groups and spaces, In memory of Alexander Reznikov. Partly based on the int. conf. on geometry and dynamics of groups and spaces in memory of Alexander Reznikov (Bonn, Germany, September 22–29, 2006), Progress in Math., 265, eds. M. Kapranov et al., Birkhauser, Basel, 2008, 399–414 | MR | Zbl
[7] E. Kukina, V. Roman'kov, On the Reidemeister spectrum and the $R_\infty$ property for some free nilpotent groups, arXiv: 0903.4533[math.GR]
[8] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl
[9] T. R. Nasybullov, “Klassy skruchennoi sopryazhënnosti v obschei i spetsialnoi lineinykh gruppakh”, Algebra i logika, 51:3 (2012), 331–346 | MR | Zbl
[10] R. Steinberg, Endomorphisms of algebraic groups, Mem. Am. Math. Soc., 80, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl
[11] V. G. Bardakov, T. R. Nasybullov, M. V. Neschadim, “Klassy skruchennoi sopryazhënnosti edinichnogo elementa”, Sib. matem. zh., 54:1 (2013), 20–34 | MR | Zbl
[12] A. Fel'shtyn, Yu. Leonov, E. Troitsky, “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR | Zbl
[13] T. Mubeena, P. Sankaran, “Twisted conjugacy classes in abelian extensions of certain linear groups”, Can. Math. Bull., 57:1 (2014), 132–140 | DOI | MR | Zbl
[14] R. W. Carter, Simple groups of Lie type, Wiley Classics Library, Reprint of the 1972 orig., John Wiley Sons, Inc., New York, 1989 | MR | Zbl
[15] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, 2nd ed., Springer-Verlag, New York et al., 1978 | MR | Zbl
[16] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR
[17] R. Steinberg, “Automorphisms of finite linear groups”, Can. J. Math., 12:4 (1960), 606–615 | DOI | MR | Zbl
[18] J. E. Humphreys, “On the automorphisms of infinite Chevalley groups”, Can. J. Math., 21 (1969), 908–911 | DOI | MR | Zbl