Twisted conjugacy classes in Chevalley groups
Algebra i logika, Tome 53 (2014) no. 6, pp. 735-763

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $\varphi\colon G\to G$ its automorphism. We say that elements $x$ and $y$ of $G$ are twisted $\varphi$-conjugate, or merely $\varphi$-conjugate (written $x\sim_\varphi y$), if there exists an element $z$ of $G$ for which $x=zy\varphi(z^{-1})$. If, in addition, $\varphi$ is an identical automorphism, then we speak of conjugacy. The $\varphi$-conjugacy class of an element $x$ is denoted by $[x]_\varphi$. The number $R(\varphi)$ of these classes is called the Reidemeister number of an automorphism $\varphi$. A group is said to possess the $R_\infty$ property if the number $R(\varphi)$ is infinite for every automorphism $\varphi$. We consider Chevalley groups over fields. In particular, it is proved that if an algebraically closed field $F$ of characteristic zero has finite transcendence degree over $\mathbb Q$, then a Chevalley group over $F$ possesses the $R_\infty$ property. Furthermore, a Chevalley group over a field $F$ of characteristic zero has the $R_\infty$ property if $F$ has a periodic automorphism group. The condition that $F$ is of characteristic zero cannot be discarded. This follows from Steinberg's result which says that for connected linear algebraic groups over an algebraically closed field of characteristic zero, there always exists an automorphism $\varphi$ for which $R(\varphi)=1$.
Keywords: twisted conjugacy classes, Chevalley group.
@article{AL_2014_53_6_a5,
     author = {T. R. Nasybullov},
     title = {Twisted conjugacy classes in {Chevalley} groups},
     journal = {Algebra i logika},
     pages = {735--763},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/}
}
TY  - JOUR
AU  - T. R. Nasybullov
TI  - Twisted conjugacy classes in Chevalley groups
JO  - Algebra i logika
PY  - 2014
SP  - 735
EP  - 763
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/
LA  - ru
ID  - AL_2014_53_6_a5
ER  - 
%0 Journal Article
%A T. R. Nasybullov
%T Twisted conjugacy classes in Chevalley groups
%J Algebra i logika
%D 2014
%P 735-763
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/
%G ru
%F AL_2014_53_6_a5
T. R. Nasybullov. Twisted conjugacy classes in Chevalley groups. Algebra i logika, Tome 53 (2014) no. 6, pp. 735-763. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/