Twisted conjugacy classes in Chevalley groups
Algebra i logika, Tome 53 (2014) no. 6, pp. 735-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group and $\varphi\colon G\to G$ its automorphism. We say that elements $x$ and $y$ of $G$ are twisted $\varphi$-conjugate, or merely $\varphi$-conjugate (written $x\sim_\varphi y$), if there exists an element $z$ of $G$ for which $x=zy\varphi(z^{-1})$. If, in addition, $\varphi$ is an identical automorphism, then we speak of conjugacy. The $\varphi$-conjugacy class of an element $x$ is denoted by $[x]_\varphi$. The number $R(\varphi)$ of these classes is called the Reidemeister number of an automorphism $\varphi$. A group is said to possess the $R_\infty$ property if the number $R(\varphi)$ is infinite for every automorphism $\varphi$. We consider Chevalley groups over fields. In particular, it is proved that if an algebraically closed field $F$ of characteristic zero has finite transcendence degree over $\mathbb Q$, then a Chevalley group over $F$ possesses the $R_\infty$ property. Furthermore, a Chevalley group over a field $F$ of characteristic zero has the $R_\infty$ property if $F$ has a periodic automorphism group. The condition that $F$ is of characteristic zero cannot be discarded. This follows from Steinberg's result which says that for connected linear algebraic groups over an algebraically closed field of characteristic zero, there always exists an automorphism $\varphi$ for which $R(\varphi)=1$.
Keywords: twisted conjugacy classes, Chevalley group.
@article{AL_2014_53_6_a5,
     author = {T. R. Nasybullov},
     title = {Twisted conjugacy classes in {Chevalley} groups},
     journal = {Algebra i logika},
     pages = {735--763},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/}
}
TY  - JOUR
AU  - T. R. Nasybullov
TI  - Twisted conjugacy classes in Chevalley groups
JO  - Algebra i logika
PY  - 2014
SP  - 735
EP  - 763
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/
LA  - ru
ID  - AL_2014_53_6_a5
ER  - 
%0 Journal Article
%A T. R. Nasybullov
%T Twisted conjugacy classes in Chevalley groups
%J Algebra i logika
%D 2014
%P 735-763
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/
%G ru
%F AL_2014_53_6_a5
T. R. Nasybullov. Twisted conjugacy classes in Chevalley groups. Algebra i logika, Tome 53 (2014) no. 6, pp. 735-763. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a5/

[1] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR

[2] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, K-Theory, 8:4 (1994), 367–393 | DOI | MR | Zbl

[3] A. Fel'shtyn, D. L. Gonçalves, “Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups (with an appendix written jointly with F. Dahmani)”, Geom. Dedicata, 146 (2010), 211–223 | DOI | MR | Zbl

[4] G. Levitt, M. Lustig, “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. Éc. Norm. Supér. (4), 33:4 (2000), 507–517 | MR | Zbl

[5] A. L. Felshtyn, “Chislo Raidemaistera lyubogo avtomorfizma gromovskoi giperbolicheskoi gruppy beskonechno”, Zap. nauchn. sem. POMI, 279, 2001, 229–240 | MR | Zbl

[6] A. Fel'shtyn, D. L. Gonçalves, “Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite”, Geometry and dynamics of groups and spaces, In memory of Alexander Reznikov. Partly based on the int. conf. on geometry and dynamics of groups and spaces in memory of Alexander Reznikov (Bonn, Germany, September 22–29, 2006), Progress in Math., 265, eds. M. Kapranov et al., Birkhauser, Basel, 2008, 399–414 | MR | Zbl

[7] E. Kukina, V. Roman'kov, On the Reidemeister spectrum and the $R_\infty$ property for some free nilpotent groups, arXiv: 0903.4533[math.GR]

[8] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR | Zbl

[9] T. R. Nasybullov, “Klassy skruchennoi sopryazhënnosti v obschei i spetsialnoi lineinykh gruppakh”, Algebra i logika, 51:3 (2012), 331–346 | MR | Zbl

[10] R. Steinberg, Endomorphisms of algebraic groups, Mem. Am. Math. Soc., 80, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl

[11] V. G. Bardakov, T. R. Nasybullov, M. V. Neschadim, “Klassy skruchennoi sopryazhënnosti edinichnogo elementa”, Sib. matem. zh., 54:1 (2013), 20–34 | MR | Zbl

[12] A. Fel'shtyn, Yu. Leonov, E. Troitsky, “Twisted conjugacy classes in saturated weakly branch groups”, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR | Zbl

[13] T. Mubeena, P. Sankaran, “Twisted conjugacy classes in abelian extensions of certain linear groups”, Can. Math. Bull., 57:1 (2014), 132–140 | DOI | MR | Zbl

[14] R. W. Carter, Simple groups of Lie type, Wiley Classics Library, Reprint of the 1972 orig., John Wiley Sons, Inc., New York, 1989 | MR | Zbl

[15] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, 2nd ed., Springer-Verlag, New York et al., 1978 | MR | Zbl

[16] Dzh. Khamfri, Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[17] R. Steinberg, “Automorphisms of finite linear groups”, Can. J. Math., 12:4 (1960), 606–615 | DOI | MR | Zbl

[18] J. E. Humphreys, “On the automorphisms of infinite Chevalley groups”, Can. J. Math., 21 (1969), 908–911 | DOI | MR | Zbl