Recognizability of symmetric groups by spectrum
Algebra i logika, Tome 53 (2014) no. 6, pp. 693-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. A finite group $G$ is said to be recognizable by spectrum if every finite group whose spectrum coincides with the spectrum of $G$ is isomorphic to $G$. It is proved the symmetric group $S_n$ is recognizable by spectrum for $n\not\in\{2,3,4,5,6,8,10,15,16,18,21,27,33,35,39,45\}$.
Keywords: finite group, symmetric group, spectrum of group, recognition by spectrum.
Mots-clés : simple group
@article{AL_2014_53_6_a1,
     author = {I. B. Gorshkov},
     title = {Recognizability of symmetric groups by spectrum},
     journal = {Algebra i logika},
     pages = {693--703},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a1/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Recognizability of symmetric groups by spectrum
JO  - Algebra i logika
PY  - 2014
SP  - 693
EP  - 703
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a1/
LA  - ru
ID  - AL_2014_53_6_a1
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Recognizability of symmetric groups by spectrum
%J Algebra i logika
%D 2014
%P 693-703
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a1/
%G ru
%F AL_2014_53_6_a1
I. B. Gorshkov. Recognizability of symmetric groups by spectrum. Algebra i logika, Tome 53 (2014) no. 6, pp. 693-703. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a1/

[1] R. Brandl, W. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[2] C. E. Praeger, W. Shi, “A characterization of some alternating and symmetric groups”, Commun. Algebra, 22:5 (1994), 1507–1503 | DOI | MR

[3] V. D. Mazurov, “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[4] M. R. Darafsheh, A. R. Moghaddamfar, “A characterization of some finite groups by their element orders”, Algebra Colloq., 7:4 (2000), 467–476 | MR | Zbl

[5] A. V. Zavarnitsin, “Raspoznavanie po mnozhestvu poryadkov elementov simmetricheskikh grupp stepeni $r$ i $r+1$ dlya prostogo $r$”, Sib. matem. zh., 43:5 (2002), 1002–1006 | MR | Zbl

[6] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemennykh grupp”, Algebra i logika, 38:3 (1999), 296–315 | MR

[7] I. B. Gorshkov, “Raspoznavaemost znakoperemennykh grupp po spektru”, Algebra i logika, 52:1 (2013), 57–63 | MR | Zbl

[8] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[9] B. Huppert, Endliche Gruppen, v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | MR | Zbl

[10] A. V. Zavarnitsin, “Raspoznavanie po mnozhestvu poryadkov elementov znakoperemennykh grupp stepeni $r+1$ i $r+2$ dlya prostogo $r$ i gruppy stepeni 16”, Algebra i logika, 39:6 (2000), 648–661 | MR | Zbl

[11] M. Aschbacher, Finite group theory, Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[12] A. V. Vasil'ev, “On finite groups isospectral to simple classical groups”, J. Algebra, 423 (2015), 318–374 | DOI | MR | Zbl

[13] R. W. Carter, “Centralizers of semisimple elements in finite groups of Lie type”, Proc. Lond. Math. Soc., III Ser., 37:3 (1978), 491–507 | DOI | MR | Zbl

[14] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups. Part I. Chapter A: Almost simple K-groups, Math. Surv. Monogr., 40, no. 3, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[15] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[16] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[17] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR | Zbl

[18] I. A. Vakula, “O stroenii konechnykh grupp, izospektralnykh znakoperemennoi gruppe”, Tr. IMM UrO RAN, 16, no. 3, 2010, 45–60

[19] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Electr. Math. Rep., 6 (2009), 1–12 http://semr.math.nsc.ru/v6/p1-12.pdf | MR | Zbl

[20] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, vers. 4.7.5, , 2014 http://www.gap-system.org