Almost recognizability by spectrum of simple exceptional groups of Lie type
Algebra i logika, Tome 53 (2014) no. 6, pp. 669-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its elements orders. Groups are said to be isospectral if their spectra coincide. For every finite simple exceptional group $L=E_7(q)$, we prove that each finite group isospectral to $L$ is isomorphic to a group $G$ squeezed between $L$ and its automorphism group, i.e., $L\le G\le\mathrm{Aut}\,L$; in particular, up to isomorphism, there are only finitely many such groups. This assertion, together with a series of previously obtained results, implies that the same is true for every finite simple exceptional group except the group $^3D_4(2)$.
Keywords: finite simple groups, exceptional groups of Lie type, element orders, prime graph, recognition by spectrum.
@article{AL_2014_53_6_a0,
     author = {A. V. Vasil'ev and A. M. Staroletov},
     title = {Almost recognizability by spectrum of simple exceptional groups of {Lie} type},
     journal = {Algebra i logika},
     pages = {669--692},
     publisher = {mathdoc},
     volume = {53},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_6_a0/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
AU  - A. M. Staroletov
TI  - Almost recognizability by spectrum of simple exceptional groups of Lie type
JO  - Algebra i logika
PY  - 2014
SP  - 669
EP  - 692
VL  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_6_a0/
LA  - ru
ID  - AL_2014_53_6_a0
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%A A. M. Staroletov
%T Almost recognizability by spectrum of simple exceptional groups of Lie type
%J Algebra i logika
%D 2014
%P 669-692
%V 53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_6_a0/
%G ru
%F AL_2014_53_6_a0
A. V. Vasil'ev; A. M. Staroletov. Almost recognizability by spectrum of simple exceptional groups of Lie type. Algebra i logika, Tome 53 (2014) no. 6, pp. 669-692. http://geodesic.mathdoc.fr/item/AL_2014_53_6_a0/

[1] W. Shi, “The characterization of the sporadic simple groups by their element orders”, Algebra Colloq., 1:2 (1994), 159–166 | MR | Zbl

[2] V. D. Mazurov, “Raspoznavanie konechnykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 37:6 (1998), 651–666 | MR | Zbl

[3] O. A. Alekseeva, A. S. Kondratev, “O raspoznavaemosti gruppy $E_8(q)$ po mnozhestvu poryadkov elementov”, Ukr. matem. zh., 54:7 (2002), 998–1003 | MR | Zbl

[4] V. D. Mazurov, “Neraspoznavaemost konechnoi prostoi gruppy $^3D_4(2)$ po spektru”, Algebra i logika, 52:5 (2013), 601–605 | MR

[5] W. Shi, “A characterization of Suzuki's simple groups”, Proc. Am. Math. Soc., 114:3 (1992), 589–591 | DOI | MR | Zbl

[6] R. Brandl, W. Shi, “A characterization of finite simple groups with abelian Sylow 2-subgroups”, Ric. Mat., 42:1 (1993), 193–198 | MR | Zbl

[7] H. Deng, W. Shi, “The characterization of Ree groups $^2F_4(q)$ by their element orders”, J. Algebra, 217:1 (1999), 180–187 | DOI | MR | Zbl

[8] A. V. Vasilev, “Raspoznavaemost grupp $G_2(3^n)$ po poryadkam ikh elementov”, Algebra i logika, 41:2 (2002), 130–142 | MR | Zbl

[9] A. V. Vasilev, A. M. Staroletov, “Raspoznavaemost grupp $G_2(q)$ po spektru”, Algebra i logika, 52:1 (2013), 3–21 | MR | Zbl

[10] A. S. Kondratev, “Raspoznavaemost po spektru grupp $E_8(q)$”, Tr. IMM UrO RAN, 16, no. 3, 2010, 146–149

[11] A. V. Vasilev, M. A. Grechkoseeva, V. D. Mazurov, Kh. P. Chao, G. Yu. Chen, V. D. Shi, “Raspoznavanie konechnykh prostykh grupp $F_4(2^m)$ po spektru”, Sib. matem. zh., 45:6 (2004), 1256–1262 | MR | Zbl

[12] A. S. Kondratev, “Raspoznavaemost grupp $E_7(2)$ i $E_7(3)$ po grafu prostykh chisel”, Tr. IMM UrO RAN, 20, no. 2, 2014, 223–229

[13] M. A. Grechkoseeva, “On element orders in covers of finite simple groups of Lie type”, J. Algebra Appl. (to appear) | DOI | MR

[14] O. A. Alekseeva, A. S. Kondratev, “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp $^3D_4(q)$ i $F_4(q)$, $q$ nechëtno”, Algebra i logika, 44:5 (2005), 517–539 | MR | Zbl

[15] O. A. Alekseeva, “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp $^3D_4(q)$, $q$ chëtno”, Algebra i logika, 45:1 (2006), 3–19 | MR | Zbl

[16] O. A. Alekseeva, A. S. Kondratev, “Kvaziraspoznavaemost odnogo klassa konechnykh prostykh grupp po mnozhestvu poryadkov elementov”, Sib. matem. zh., 44:2 (2003), 241–255 | MR | Zbl

[17] A. S. Kondratev, “Kvaziraspoznavaemost po mnozhestvu poryadkov elementov grupp $E_6(q)$ i $^2E_6(q)$”, Sib. matem. zh., 48:6 (2007), 1250–1271 | MR | Zbl

[18] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR | Zbl

[19] M. Roitman, “On Zsigmondy primes”, Proc. Am. Math. Soc., 125:7 (1997), 1913–1919 | DOI | MR | Zbl

[20] V. V. Prasolov, Mnogochleny, 2-e izd., MTsNMO, M., 2001

[21] B. Huppert, N. Blackburn, Finite groups, v. II, Grundlehren math. Wiss., 242, Springer-Verlag, Berlin a.o., 1982 | MR | Zbl

[22] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[23] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[24] A. V. Vasilev, I. B. Gorshkov, “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. matem. zh., 50:2 (2009), 292–299 | MR | Zbl

[25] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[26] A. V. Vasilev, E. P. Vdovin, “Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 50:4 (2011), 425–470 | MR | Zbl

[27] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Commun. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl

[28] A. A. Buturlakin, M. A. Grechkoseeva, “Tsiklicheskoe stroenie maksimalnykh torov v konechnykh klassicheskikh gruppakh”, Algebra i logika, 46:2 (2007), 129–156 | MR | Zbl

[29] D. M. Testerman, “$A_1$-Type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups”, J. Algebra, 177:1 (1995), 34–76 | DOI | MR | Zbl

[30] A. V. Vasilev, M. A. Grechkoseeva, A. M. Staroletov, “O konechnykh gruppakh, izospektralnykh prostym lineinym i unitarnym gruppam”, Sib. matem. zh., 52:1 (2011), 39–53 | MR | Zbl

[31] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[32] L. Di Martino, A. E. Zalesskii, “Minimum polynomials and lower bounds for eigenvalue multiplicities of prime-power order elements in representations of classical groups”, J. Algebra, 243:1 (2001), 228–263 | DOI | MR | Zbl

[33] L. Di Martino, A. E. Zalesskii, “Corrigendum to: Minimum polynomials and lower bounds for eigenvalue multiplicities of prime-power order elements in representations of classical groups [J. Algebra, 243 (2001) 228–263]”, J. Algebra, 296:1 (2006), 249–252 | DOI | MR

[34] A. M. Staroletov, “Sporadic composition factors of finite groups isospectral to simple groups”, Sib. elektron. matem. izv., 8 (2011), 268–272 | MR

[35] D. Deriziotis, “The centralizers of semisimple elements of the Chevalley groups $E_7$ and $E_8$”, Tokyo J. Math., 6:1 (1983), 191–216 | DOI | MR | Zbl

[36] A. A. Buturlakin, “Spektry konechnykh lineinykh i unitarnykh grupp”, Algebra i logika, 47:2 (2008), 157–173 | MR | Zbl

[37] R. M. Guralnick, P. H. Tiep, “Finite simple unisingular groups of Lie type”, J. Group Theory, 6:3 (2003), 271–310 | DOI | MR | Zbl