Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_5_a6, author = {A. S. Mamontov}, title = {The {Baer--Suzuki} theorem for groups of $2$-exponent~$4$}, journal = {Algebra i logika}, pages = {649--652}, publisher = {mathdoc}, volume = {53}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/} }
A. S. Mamontov. The Baer--Suzuki theorem for groups of $2$-exponent~$4$. Algebra i logika, Tome 53 (2014) no. 5, pp. 649-652. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/
[1] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl
[2] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math., II Ser., 82 (1965), 191–212 | DOI | MR | Zbl
[3] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19 (1971), 536–537 | DOI | MR | Zbl
[4] Nereshënnye voprosy teorii grupp, Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf
[5] A. I. Sozutov, “Ob odnom obobschenii teoremy Bera–Sudzuki”, Sib. matem. zh., 41:3 (2000), 674–675 | MR | Zbl
[6] D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, “Lokalnaya konechnost nekotorykh grupp perioda 12”, Sib. matem. zh., 53:6 (2012), 1373–1378 | MR | Zbl
[7] A. S. Mamontov, “Gruppy perioda 12 bez elementov poryadka 12”, Sib. matem. zh., 54:1 (2013), 150–156 | MR | Zbl
[8] D. V. Lytkina, V. D. Mazurov, “Groups with given element orders”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 191–203
[9] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, vers. 4.7.5, , 2014 http://www.gap-system.org