The Baer--Suzuki theorem for groups of $2$-exponent~$4$
Algebra i logika, Tome 53 (2014) no. 5, pp. 649-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2014_53_5_a6,
     author = {A. S. Mamontov},
     title = {The {Baer--Suzuki} theorem for groups of $2$-exponent~$4$},
     journal = {Algebra i logika},
     pages = {649--652},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/}
}
TY  - JOUR
AU  - A. S. Mamontov
TI  - The Baer--Suzuki theorem for groups of $2$-exponent~$4$
JO  - Algebra i logika
PY  - 2014
SP  - 649
EP  - 652
VL  - 53
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/
LA  - ru
ID  - AL_2014_53_5_a6
ER  - 
%0 Journal Article
%A A. S. Mamontov
%T The Baer--Suzuki theorem for groups of $2$-exponent~$4$
%J Algebra i logika
%D 2014
%P 649-652
%V 53
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/
%G ru
%F AL_2014_53_5_a6
A. S. Mamontov. The Baer--Suzuki theorem for groups of $2$-exponent~$4$. Algebra i logika, Tome 53 (2014) no. 5, pp. 649-652. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a6/

[1] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl

[2] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math., II Ser., 82 (1965), 191–212 | DOI | MR | Zbl

[3] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebra, 19 (1971), 536–537 | DOI | MR | Zbl

[4] Nereshënnye voprosy teorii grupp, Kourovskaya tetrad, 18-e izd., In-t matem. SO RAN, Novosibirsk, 2014 http://www.math.nsc.ru/~alglog/18kt.pdf

[5] A. I. Sozutov, “Ob odnom obobschenii teoremy Bera–Sudzuki”, Sib. matem. zh., 41:3 (2000), 674–675 | MR | Zbl

[6] D. V. Lytkina, V. D. Mazurov, A. S. Mamontov, “Lokalnaya konechnost nekotorykh grupp perioda 12”, Sib. matem. zh., 53:6 (2012), 1373–1378 | MR | Zbl

[7] A. S. Mamontov, “Gruppy perioda 12 bez elementov poryadka 12”, Sib. matem. zh., 54:1 (2013), 150–156 | MR | Zbl

[8] D. V. Lytkina, V. D. Mazurov, “Groups with given element orders”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 191–203

[9] The GAP Group, GAP – Groups, Algorithms, Programming – a System for Computational Discrete Algebra, vers. 4.7.5, , 2014 http://www.gap-system.org