Properties of $s\Sigma$-reducibility
Algebra i logika, Tome 53 (2014) no. 5, pp. 625-642

Voir la notice de l'article provenant de la source Math-Net.Ru

We couch the definition of $s\Sigma$-reducibility on structures, describe some properties of $s\Sigma$-reducibility, and also exemplify explicitly how to use it. In particular, we consider natural expansions of structures such as Morleyization and Skolemization. Previously, a class of quasiregular structures was defined to be a class of fixed points of Morleyization with respect to $s\Sigma$-reducibility, extending the class of models of regular theories and the class of effectively model-complete structures. It was proved that an $\mathrm{HF}$-superstructure over a quasiregular structure is quasiresolvent and, consequently, has a universal $\Sigma$-function and possesses the reduction property. Here we show that an $\mathrm{HF}$-superstructure over a quasiregular structure has the $\Sigma$-uniformization property iff with respect to $s\Sigma$-reducibility this structure is a fixed point for some of its Skolemizations with an extra property, that of well-definededness. In this case an $\mathrm{HF}$-superstructure and a Moschovakis superstructure over a given structure are $s\Sigma$-equivalent.
Keywords: generalized computability, model theory, model completeness, decidability, uniformization property.
@article{AL_2014_53_5_a4,
     author = {A. I. Stukachev},
     title = {Properties of $s\Sigma$-reducibility},
     journal = {Algebra i logika},
     pages = {625--642},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a4/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - Properties of $s\Sigma$-reducibility
JO  - Algebra i logika
PY  - 2014
SP  - 625
EP  - 642
VL  - 53
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_5_a4/
LA  - ru
ID  - AL_2014_53_5_a4
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T Properties of $s\Sigma$-reducibility
%J Algebra i logika
%D 2014
%P 625-642
%V 53
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_5_a4/
%G ru
%F AL_2014_53_5_a4
A. I. Stukachev. Properties of $s\Sigma$-reducibility. Algebra i logika, Tome 53 (2014) no. 5, pp. 625-642. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a4/