Groups whose element orders do not exceed 6
Algebra i logika, Tome 53 (2014) no. 5, pp. 570-586

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a periodic group whose element orders do not exceed 6 either is a locally finite or is group of exponent 5.
Keywords: periodic group, locally finite group.
@article{AL_2014_53_5_a1,
     author = {D. V. Lytkina and V. D. Mazurov and A. S. Mamontov and E. Jabara},
     title = {Groups whose element orders do not exceed~6},
     journal = {Algebra i logika},
     pages = {570--586},
     publisher = {mathdoc},
     volume = {53},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
AU  - A. S. Mamontov
AU  - E. Jabara
TI  - Groups whose element orders do not exceed 6
JO  - Algebra i logika
PY  - 2014
SP  - 570
EP  - 586
VL  - 53
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/
LA  - ru
ID  - AL_2014_53_5_a1
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%A A. S. Mamontov
%A E. Jabara
%T Groups whose element orders do not exceed 6
%J Algebra i logika
%D 2014
%P 570-586
%V 53
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/
%G ru
%F AL_2014_53_5_a1
D. V. Lytkina; V. D. Mazurov; A. S. Mamontov; E. Jabara. Groups whose element orders do not exceed 6. Algebra i logika, Tome 53 (2014) no. 5, pp. 570-586. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/