Groups whose element orders do not exceed 6
Algebra i logika, Tome 53 (2014) no. 5, pp. 570-586
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a periodic group whose element orders do not exceed 6 either is a locally finite or is group of exponent 5.
Keywords:
periodic group, locally finite group.
@article{AL_2014_53_5_a1,
author = {D. V. Lytkina and V. D. Mazurov and A. S. Mamontov and E. Jabara},
title = {Groups whose element orders do not exceed~6},
journal = {Algebra i logika},
pages = {570--586},
publisher = {mathdoc},
volume = {53},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/}
}
D. V. Lytkina; V. D. Mazurov; A. S. Mamontov; E. Jabara. Groups whose element orders do not exceed 6. Algebra i logika, Tome 53 (2014) no. 5, pp. 570-586. http://geodesic.mathdoc.fr/item/AL_2014_53_5_a1/