Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_4_a2, author = {C. Herrmann and M. V. Semenova}, title = {Rings of quotients of finite $AW^*$-algebras. {Representation} and algebraic approximation}, journal = {Algebra i logika}, pages = {466--504}, publisher = {mathdoc}, volume = {53}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/} }
TY - JOUR AU - C. Herrmann AU - M. V. Semenova TI - Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation JO - Algebra i logika PY - 2014 SP - 466 EP - 504 VL - 53 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/ LA - ru ID - AL_2014_53_4_a2 ER -
C. Herrmann; M. V. Semenova. Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation. Algebra i logika, Tome 53 (2014) no. 4, pp. 466-504. http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/
[1] K. R. Goodearl, P. Menal, “Free and residually finite dimensional $C^*$-algebras”, J. Funct. Anal., 90:2 (1990), 391–410 | DOI | MR | Zbl
[2] S. K. Berberian, “The regular ring of a finite $AW^*$-algebra”, Ann. Math. (2), 65 (1957), 224–240 | DOI | MR | Zbl
[3] I. Hafner, “The regular ring and the maximal ring of quotients of a finite Baer $*$-ring”, Mich. Math. J., 21 (1974), 153–160 | DOI | MR | Zbl
[4] E. S. Pyle, “The regular ring and the maximal ring of quotients of a finite Baer $*$-ring”, Trans. Am. Math. Soc., 203 (1975), 201–213 | MR | Zbl
[5] S. K. Berberian, “The maximal ring of quotients of a finite von Neumann algebra”, Rocky Mt. J. Math., 12 (1982), 149–164 | DOI | MR | Zbl
[6] F. J. Murray, J. von Neumann, “On rings of operators”, Ann. Math. (2), 37 (1936), 116–229 | DOI | MR | Zbl
[7] D. Handelman, “Finite Rickart $C^*$-algebras and their properties”, Studies in analysis, Adv. Math., Suppl. Stud., 4, ed. G.-C. Rota, Academic Press, New York–San Francisco–London, 1979, 171–196 | MR
[8] P. Ara, P. Menal, “On regular rings with involution”, Arch. Math., 42 (1984), 126–130 | DOI | MR | Zbl
[9] D. Handelman, “Coordinatization applied to finite Baer $*$-rings”, Trans. Am. Math. Soc., 235 (1978), 1–34 | MR | Zbl
[10] S. K. Berberian, Baer rings and Baer $*$-rings, , Austin, 1988 http://www.ma.utexas.edu/mp_arc/c/03/03-181.pdf
[11] N. Jacobson, Lectures in abstract algebra, v. 2, Linear algebra, D. Van Nostrand Co., Inc., Toronto–New York–London, 1953 | MR | Zbl
[12] S. K. Berberian, Lectures in functional analysis and operator theory, Grad. Texts Math., 15, Springer-Verlag, New York–Heidelberg–Berlin, 1974 | DOI | MR | Zbl
[13] J. von Neumann, Continuous geometry, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl
[14] K. R. Goodearl, Von Neumann regular rings, 2nd ed., Krieger Publ. Co., Malabar, Fl, 1991 | MR | Zbl
[15] F. Maeda, Kontinuierliche Geometrie, Grundlehren Math. Wiss., 95, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | MR | Zbl
[16] L. A. Skornyakov, Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, Fizmatgiz, M., 1961 | MR
[17] I. Kaplansky, “Any orthocomplemented complete modular lattice is a continuous geometry”, Ann. Math. (2), 67 (1955), 524–541 | DOI | MR
[18] C. C. Chang, H. J. Keisler, Model theory, Stud. Logic Found. Math., 73, 3rd ed., North-Holland Publ. Co., Amsterdam–London; Am. Elsevier Publ. Co., New York, 1973 | MR | Zbl
[19] D. V. Tyukavkin, “Regulyarnye koltsa s involyutsiei”, Vestnik Moskovskogo gos. un-ta. Ser. 1: Matem. Mekh., 1984, no. 3, 29–32 | MR | Zbl
[20] F. Micol, On representability of $*$-regular rings and modular ortholattices, Ph. D. thesis, Technische Univ. Darmstadt, 2003 http://elib.tu-darmstadt.de/diss/000303/diss.pdf
[21] L. Rowen, Ring theory, v. I, Pure Appl. Math., 127, Academic Press, Inc., Boston, MA etc., 1988 | MR | Zbl
[22] S. K. Berberian, Baer $*$-rings, Grundlehren Math. Wiss. Einzeldarstel., 195, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | DOI | MR | Zbl
[23] I. Kaplansky, “Projections in Banach algebras”, Ann. Math. (2), 53 (1951), 235–249 | DOI | MR | Zbl
[24] E. S. Pyle, On maximal ring of quotients of a finite Baer $*$-rings, Ph. D. Thesis, Univ. Texas, Austin, 1972
[25] G. Elek, E. Szabö, “Sofic groups and direct finiteness”, J. Algebra, 280:2 (2004), 426–434 | DOI | MR | Zbl
[26] N. P. Brown, N. Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Stud. Math., 88, Am. Math. Soc., Providence, RI, 2008 | MR | Zbl
[27] I. N. Herstein, Rings with involution, Chicago Lect. Math., Univ. Chicago Press, Chicago–London, 1976 | MR | Zbl