Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation
Algebra i logika, Tome 53 (2014) no. 4, pp. 466-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that Berberian's $*$-regular extension of a finite $AW^*$-algebra admits a faithful representation, matching the involution with adjunction, in the $\mathbb C$-algebra of endomorphisms of a closed subspace of some ultrapower of a Hilbert space. It also turns out that this extension is a homomorphic image of a regular subalgebra of an ultraproduct of matrix $*$-algebras $\mathbb C^{n\times n}$.
Keywords: $AW^*$-algebra, finite Rickart $C^*$-algebra, ring of quotients, $*$-regular ring, projection ortholattice
Mots-clés : ultraproduct.
@article{AL_2014_53_4_a2,
     author = {C. Herrmann and M. V. Semenova},
     title = {Rings of quotients of finite $AW^*$-algebras. {Representation} and algebraic approximation},
     journal = {Algebra i logika},
     pages = {466--504},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/}
}
TY  - JOUR
AU  - C. Herrmann
AU  - M. V. Semenova
TI  - Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation
JO  - Algebra i logika
PY  - 2014
SP  - 466
EP  - 504
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/
LA  - ru
ID  - AL_2014_53_4_a2
ER  - 
%0 Journal Article
%A C. Herrmann
%A M. V. Semenova
%T Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation
%J Algebra i logika
%D 2014
%P 466-504
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/
%G ru
%F AL_2014_53_4_a2
C. Herrmann; M. V. Semenova. Rings of quotients of finite $AW^*$-algebras. Representation and algebraic approximation. Algebra i logika, Tome 53 (2014) no. 4, pp. 466-504. http://geodesic.mathdoc.fr/item/AL_2014_53_4_a2/

[1] K. R. Goodearl, P. Menal, “Free and residually finite dimensional $C^*$-algebras”, J. Funct. Anal., 90:2 (1990), 391–410 | DOI | MR | Zbl

[2] S. K. Berberian, “The regular ring of a finite $AW^*$-algebra”, Ann. Math. (2), 65 (1957), 224–240 | DOI | MR | Zbl

[3] I. Hafner, “The regular ring and the maximal ring of quotients of a finite Baer $*$-ring”, Mich. Math. J., 21 (1974), 153–160 | DOI | MR | Zbl

[4] E. S. Pyle, “The regular ring and the maximal ring of quotients of a finite Baer $*$-ring”, Trans. Am. Math. Soc., 203 (1975), 201–213 | MR | Zbl

[5] S. K. Berberian, “The maximal ring of quotients of a finite von Neumann algebra”, Rocky Mt. J. Math., 12 (1982), 149–164 | DOI | MR | Zbl

[6] F. J. Murray, J. von Neumann, “On rings of operators”, Ann. Math. (2), 37 (1936), 116–229 | DOI | MR | Zbl

[7] D. Handelman, “Finite Rickart $C^*$-algebras and their properties”, Studies in analysis, Adv. Math., Suppl. Stud., 4, ed. G.-C. Rota, Academic Press, New York–San Francisco–London, 1979, 171–196 | MR

[8] P. Ara, P. Menal, “On regular rings with involution”, Arch. Math., 42 (1984), 126–130 | DOI | MR | Zbl

[9] D. Handelman, “Coordinatization applied to finite Baer $*$-rings”, Trans. Am. Math. Soc., 235 (1978), 1–34 | MR | Zbl

[10] S. K. Berberian, Baer rings and Baer $*$-rings, , Austin, 1988 http://www.ma.utexas.edu/mp_arc/c/03/03-181.pdf

[11] N. Jacobson, Lectures in abstract algebra, v. 2, Linear algebra, D. Van Nostrand Co., Inc., Toronto–New York–London, 1953 | MR | Zbl

[12] S. K. Berberian, Lectures in functional analysis and operator theory, Grad. Texts Math., 15, Springer-Verlag, New York–Heidelberg–Berlin, 1974 | DOI | MR | Zbl

[13] J. von Neumann, Continuous geometry, Princeton Univ. Press, Princeton, NJ, 1960 | MR | Zbl

[14] K. R. Goodearl, Von Neumann regular rings, 2nd ed., Krieger Publ. Co., Malabar, Fl, 1991 | MR | Zbl

[15] F. Maeda, Kontinuierliche Geometrie, Grundlehren Math. Wiss., 95, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958 | MR | Zbl

[16] L. A. Skornyakov, Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, Fizmatgiz, M., 1961 | MR

[17] I. Kaplansky, “Any orthocomplemented complete modular lattice is a continuous geometry”, Ann. Math. (2), 67 (1955), 524–541 | DOI | MR

[18] C. C. Chang, H. J. Keisler, Model theory, Stud. Logic Found. Math., 73, 3rd ed., North-Holland Publ. Co., Amsterdam–London; Am. Elsevier Publ. Co., New York, 1973 | MR | Zbl

[19] D. V. Tyukavkin, “Regulyarnye koltsa s involyutsiei”, Vestnik Moskovskogo gos. un-ta. Ser. 1: Matem. Mekh., 1984, no. 3, 29–32 | MR | Zbl

[20] F. Micol, On representability of $*$-regular rings and modular ortholattices, Ph. D. thesis, Technische Univ. Darmstadt, 2003 http://elib.tu-darmstadt.de/diss/000303/diss.pdf

[21] L. Rowen, Ring theory, v. I, Pure Appl. Math., 127, Academic Press, Inc., Boston, MA etc., 1988 | MR | Zbl

[22] S. K. Berberian, Baer $*$-rings, Grundlehren Math. Wiss. Einzeldarstel., 195, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | DOI | MR | Zbl

[23] I. Kaplansky, “Projections in Banach algebras”, Ann. Math. (2), 53 (1951), 235–249 | DOI | MR | Zbl

[24] E. S. Pyle, On maximal ring of quotients of a finite Baer $*$-rings, Ph. D. Thesis, Univ. Texas, Austin, 1972

[25] G. Elek, E. Szabö, “Sofic groups and direct finiteness”, J. Algebra, 280:2 (2004), 426–434 | DOI | MR | Zbl

[26] N. P. Brown, N. Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Stud. Math., 88, Am. Math. Soc., Providence, RI, 2008 | MR | Zbl

[27] I. N. Herstein, Rings with involution, Chicago Lect. Math., Univ. Chicago Press, Chicago–London, 1976 | MR | Zbl