Families without minimal numberings
Algebra i logika, Tome 53 (2014) no. 4, pp. 427-450

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any nonzero computable ordinal and its arbitrary notation $a$, there exists $\Sigma_a^{-1}$-computable family without minimal computable numberings.
Keywords: computable numbering, Ershov hierarchy, minimal numbering.
@article{AL_2014_53_4_a0,
     author = {K. Sh. Abeshev and S. A. Badaev and M. Mustafa},
     title = {Families without minimal numberings},
     journal = {Algebra i logika},
     pages = {427--450},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_4_a0/}
}
TY  - JOUR
AU  - K. Sh. Abeshev
AU  - S. A. Badaev
AU  - M. Mustafa
TI  - Families without minimal numberings
JO  - Algebra i logika
PY  - 2014
SP  - 427
EP  - 450
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_4_a0/
LA  - ru
ID  - AL_2014_53_4_a0
ER  - 
%0 Journal Article
%A K. Sh. Abeshev
%A S. A. Badaev
%A M. Mustafa
%T Families without minimal numberings
%J Algebra i logika
%D 2014
%P 427-450
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_4_a0/
%G ru
%F AL_2014_53_4_a0
K. Sh. Abeshev; S. A. Badaev; M. Mustafa. Families without minimal numberings. Algebra i logika, Tome 53 (2014) no. 4, pp. 427-450. http://geodesic.mathdoc.fr/item/AL_2014_53_4_a0/