Rank and order of a finite group admitting a Frobenius-like group of automorphisms
Algebra i logika, Tome 53 (2014) no. 3, pp. 401-412
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite group $FH$ is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup $F$ with a nontrivial complement $H$ such that $FH/[F,F]$ is a Frobenius group with Frobenius kernel $F/[F,F]$. Suppose that a finite group $G$ admits a Frobenius-like group of automorphisms $FH$ of coprime order with certain additional restrictions (which are satisfied, in particular, if either $|FH|$ is odd or $|H|=2$). In the case where $G$ is a finite $p$-group such that $G=[G,F]$ it is proved that the rank of $G$ is bounded above in terms of $|H|$ and the rank of the fixed-point subgroup $C_G(H)$, and that $|G|$ is bounded above in terms of $|H|$ and $|C_G(H)|$. As a corollary, in the case where $G$ is an arbitrary finite group estimates are obtained of the form $|G|\le|C_G(F)|\cdot f(|H|,|C_G(H)|)$ for the order, and $\mathbf r(G)\le\mathbf r(C_G(F))+g(|H|,\mathbf r(C_G(H)))$ for the rank, where f and g are some functions of two variables.
Mots-clés :
automorphism, Frobenius group
Keywords: finite group, rank, order.
Keywords: finite group, rank, order.
@article{AL_2014_53_3_a5,
author = {G. Ercan and \.I. G\"ulo\u{g}lu and E. I. Khukhro},
title = {Rank and order of a~finite group admitting {a~Frobenius-like} group of automorphisms},
journal = {Algebra i logika},
pages = {401--412},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/}
}
TY - JOUR AU - G. Ercan AU - İ. Güloğlu AU - E. I. Khukhro TI - Rank and order of a finite group admitting a Frobenius-like group of automorphisms JO - Algebra i logika PY - 2014 SP - 401 EP - 412 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/ LA - ru ID - AL_2014_53_3_a5 ER -
G. Ercan; İ. Güloğlu; E. I. Khukhro. Rank and order of a finite group admitting a Frobenius-like group of automorphisms. Algebra i logika, Tome 53 (2014) no. 3, pp. 401-412. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/