Rank and order of a~finite group admitting a~Frobenius-like group of automorphisms
Algebra i logika, Tome 53 (2014) no. 3, pp. 401-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $FH$ is said to be Frobenius-like if it has a nontrivial nilpotent normal subgroup $F$ with a nontrivial complement $H$ such that $FH/[F,F]$ is a Frobenius group with Frobenius kernel $F/[F,F]$. Suppose that a finite group $G$ admits a Frobenius-like group of automorphisms $FH$ of coprime order with certain additional restrictions (which are satisfied, in particular, if either $|FH|$ is odd or $|H|=2$). In the case where $G$ is a finite $p$-group such that $G=[G,F]$ it is proved that the rank of $G$ is bounded above in terms of $|H|$ and the rank of the fixed-point subgroup $C_G(H)$, and that $|G|$ is bounded above in terms of $|H|$ and $|C_G(H)|$. As a corollary, in the case where $G$ is an arbitrary finite group estimates are obtained of the form $|G|\le|C_G(F)|\cdot f(|H|,|C_G(H)|)$ for the order, and $\mathbf r(G)\le\mathbf r(C_G(F))+g(|H|,\mathbf r(C_G(H)))$ for the rank, where f and g are some functions of two variables.
Mots-clés : automorphism, Frobenius group
Keywords: finite group, rank, order.
@article{AL_2014_53_3_a5,
     author = {G. Ercan and \.I. G\"ulo\u{g}lu and E. I. Khukhro},
     title = {Rank and order of a~finite group admitting {a~Frobenius-like} group of automorphisms},
     journal = {Algebra i logika},
     pages = {401--412},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/}
}
TY  - JOUR
AU  - G. Ercan
AU  - İ. Güloğlu
AU  - E. I. Khukhro
TI  - Rank and order of a~finite group admitting a~Frobenius-like group of automorphisms
JO  - Algebra i logika
PY  - 2014
SP  - 401
EP  - 412
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/
LA  - ru
ID  - AL_2014_53_3_a5
ER  - 
%0 Journal Article
%A G. Ercan
%A İ. Güloğlu
%A E. I. Khukhro
%T Rank and order of a~finite group admitting a~Frobenius-like group of automorphisms
%J Algebra i logika
%D 2014
%P 401-412
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/
%G ru
%F AL_2014_53_3_a5
G. Ercan; İ. Güloğlu; E. I. Khukhro. Rank and order of a~finite group admitting a~Frobenius-like group of automorphisms. Algebra i logika, Tome 53 (2014) no. 3, pp. 401-412. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a5/

[1] E. I. Khukhro, “Graded Lie rings with many commuting components and an application to 2-Frobenius groups”, Bull. Lond. Math. Soc., 40:5 (2008), 907–912 | DOI | MR | Zbl

[2] N. Yu. Makarenko, P. Shumyatsky, “Frobenius groups as groups of automorphisms”, Proc. Am. Math. Soc., 138:10 (2010), 3425–3436 | DOI | MR | Zbl

[3] E. I. Khukhro, “Nilpotentnaya dlina konechnoi gruppy, dopuskayuschei frobeniusovu gruppu avtomorfizmov s yadrom bez nepodvizhnykh tochek”, Algebra i logika, 49:6 (2010), 819–833 | MR

[4] E. Khukhro, N. Makarenko, P. Shumyatsky, “Frobenius groups of automorphisms and their fixed points”, Forum Math., 26:1 (2014), 73–112 | DOI | MR | Zbl

[5] N. Yu. Makarenko, E. I. Khukhro, P. Shumyatskii, “Nepodvizhnye tochki frobeniusovykh grupp avtomorfizmov”, Dokl. RAN, 437, no. 1, 20–23 | MR | Zbl

[6] P. Shumyatsky, “On the exponent of a finite group with an automorphism group of order twelve”, J. Algebra, 331:1 (2011), 482–489 | DOI | MR | Zbl

[7] P. Shumyatsky, “Positive laws in fixed points of automorphisms of finite groups”, J. Pure Appl. Algebra, 215:11 (2011), 2559–2566 | DOI | MR | Zbl

[8] E. I. Khukhro, “Fitting height of a finite group with a Frobenius group of automorphisms”, J. Algebra, 366 (2012), 1–11 | DOI | MR | Zbl

[9] E. I. Khukhro, “Rang i poryadok konechnoi gruppy, dopuskayuschei frobeniusovu gruppu avtomorfizmov”, Algebra i logika, 52:1 (2013), 99–108 | MR | Zbl

[10] G. Ercan, İ. Ş. Güloğlu, E. Öğüt, “Nilpotent length of a finite solvable group with a Frobenius group of automorphisms”, Commun. Algebra (to appear)

[11] İ. Ş. Güloğlu, G. Ercan, “Action of a Frobenius-like group”, J. Algebra, 402 (2014), 533–543 | DOI | MR | Zbl

[12] B. Huppert, Endliche Gruppen, v. I, Grundlehren mathem. Wiss. Einzeldarstel., 134, Springer-Verlag, Berlin a.o., 1967 | DOI | MR | Zbl

[13] B. Hartley, I. M. Isaacs, “On characters and fixed points of coprime operator groups”, J. Algebra, 131:1 (1990), 342–358 | DOI | MR | Zbl

[14] A. Lubotzky, A. Mann, “Powerful $p$-groups. I: Finite groups”, J. Algebra, 105:2 (1987), 484–505 | DOI | MR | Zbl

[15] L. G. Kovács, “On finite soluble groups”, Math. Z., 103 (1968), 37–39 | DOI | MR | Zbl

[16] P. Longobardi, M. Maj, “On the number of generators of a finite group”, Arch. Math., 50:2 (1988), 110–112 | DOI | MR | Zbl

[17] R. M. Guralnick, “On the number of generators of a finite group”, Arch. Math., 53:6 (1989), 521–523 | DOI | MR | Zbl

[18] E. I. Khukhro, V. D. Mazurov, “Finite groups with an automorphism of prime order whose centralizer has small rank”, J. Algebra, 301:2 (2006), 474–492 | DOI | MR | Zbl

[19] P. Shumyatsky, “Involutory automorphisms of finite groups and their centralizers,”, Arch. Math., 71:6 (1998), 425–432 | DOI | MR | Zbl