Quasivariety lattices of pointed Abelian groups
Algebra i logika, Tome 53 (2014) no. 3, pp. 372-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of quasicritical pointed Abelian groups. It is proved that the quasivariety lattice of pointed Abelian groups is $Q$-universal. We construct a quasivariety lattice of pointed Abelian groups whose set of finite sublattices is uncomputable. It is shown that there exists a continuum of such lattices of quasivarieties.
Keywords: quasivariety of algebras, pointed Abelian group, congruence, congruence lattice, quasivariety lattice, Birkhoff–Mal'tsev problem, uncomputable set.
@article{AL_2014_53_3_a4,
     author = {A. M. Nurakunov},
     title = {Quasivariety lattices of pointed {Abelian} groups},
     journal = {Algebra i logika},
     pages = {372--400},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/}
}
TY  - JOUR
AU  - A. M. Nurakunov
TI  - Quasivariety lattices of pointed Abelian groups
JO  - Algebra i logika
PY  - 2014
SP  - 372
EP  - 400
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/
LA  - ru
ID  - AL_2014_53_3_a4
ER  - 
%0 Journal Article
%A A. M. Nurakunov
%T Quasivariety lattices of pointed Abelian groups
%J Algebra i logika
%D 2014
%P 372-400
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/
%G ru
%F AL_2014_53_3_a4
A. M. Nurakunov. Quasivariety lattices of pointed Abelian groups. Algebra i logika, Tome 53 (2014) no. 3, pp. 372-400. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/

[1] A. I. Maltsev, “O nekotorykh pogranichnykh voprosakh algebry i logiki”, Tr. Mezhd. kongressa matematikov (Moskva, 1966), Mir, M., 1968, 217–231

[2] G. Birkhoff, “Universal algebra”, Proc. First Canadian Math. Congr. (Montreal, 1945), Univ. of Toronto Press, Toronto, 1946, 310–326 | MR | Zbl

[3] V. A. Gorbunov, V. I. Tumanov, “Stroenie reshëtok kvazimnogoobrazii”, Matematicheskaya logika i teoriya algoritmov, Trudy In-ta matem. SO AN SSSR, 2, Nauka, Novosibirsk, 1982, 12–44 | MR

[4] K. Adaricheva, J. B. Nation, “Lattices of quasi-equational theories as congruence lattices of semilattices with operators. I”, Int. J. Algebra Comput., 22:7 (2012), Paper No. 1250065, 27 pp. | MR | Zbl

[5] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[6] M. E. Adams, K. V. Adaricheva, W. Dziobiak, A. V. Kravchenko, “Open questions related to the problem of Birkhoff and Maltsev”, Stud. Log., 78:1/2 (2004), 357–378 | DOI | MR | Zbl

[7] M. V. Sapir, “The lattice of quasivarieties of semigroups”, Algebra Univers., 21:2/3 (1985), 172–180 | DOI | MR | Zbl

[8] A. M. Nurakunov, “Unreasonable lattices of quasivarieties”, Int. J. Algebra Comput., 22:3 (2012), Paper No. 1250006, 17 pp. | DOI | MR

[9] D. Pigozzi, G. Tardos, The representation of certain abstract lattices as lattices of subvarieties, Manuscript, 1999

[10] M. V. Semenova, A. Zamoiska-Dzhenio, “O reshëtkakh podklassov”, Sib. matem. zh., 53:5 (2012), 1111–1132 | MR | Zbl

[11] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[12] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[13] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[14] Z. M. Kishkina, “Endomorfizmy $p$-primitivnykh abelevykh grupp bez krucheniya”, Izv. AN SSSR. Ser. matem., 9:3 (1945), 201–232 | MR | Zbl

[15] A. M. Nurakunov, “Finite lattices as relative congruence lattices of finite algebras”, Algebra Univers., 57:2 (2007), 207–214 | DOI | MR | Zbl

[16] M. E. Adams, W. Dziobiak, “$Q$-universal quasivarieties of algebras”, Proc. Am. Math. Soc., 120:4 (1994), 1053–1059 | MR | Zbl