Quasivariety lattices of pointed Abelian groups
Algebra i logika, Tome 53 (2014) no. 3, pp. 372-400

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of quasicritical pointed Abelian groups. It is proved that the quasivariety lattice of pointed Abelian groups is $Q$-universal. We construct a quasivariety lattice of pointed Abelian groups whose set of finite sublattices is uncomputable. It is shown that there exists a continuum of such lattices of quasivarieties.
Keywords: quasivariety of algebras, pointed Abelian group, congruence, congruence lattice, quasivariety lattice, Birkhoff–Mal'tsev problem, uncomputable set.
@article{AL_2014_53_3_a4,
     author = {A. M. Nurakunov},
     title = {Quasivariety lattices of pointed {Abelian} groups},
     journal = {Algebra i logika},
     pages = {372--400},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/}
}
TY  - JOUR
AU  - A. M. Nurakunov
TI  - Quasivariety lattices of pointed Abelian groups
JO  - Algebra i logika
PY  - 2014
SP  - 372
EP  - 400
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/
LA  - ru
ID  - AL_2014_53_3_a4
ER  - 
%0 Journal Article
%A A. M. Nurakunov
%T Quasivariety lattices of pointed Abelian groups
%J Algebra i logika
%D 2014
%P 372-400
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/
%G ru
%F AL_2014_53_3_a4
A. M. Nurakunov. Quasivariety lattices of pointed Abelian groups. Algebra i logika, Tome 53 (2014) no. 3, pp. 372-400. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a4/