Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2014_53_3_a1, author = {D. Vakarelov}, title = {Dynamic {mereotopology.~III.} {Whiteheadean} type of integrated point-free theories of space and {time.~I}}, journal = {Algebra i logika}, pages = {300--322}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2014_53_3_a1/} }
D. Vakarelov. Dynamic mereotopology.~III. Whiteheadean type of integrated point-free theories of space and time.~I. Algebra i logika, Tome 53 (2014) no. 3, pp. 300-322. http://geodesic.mathdoc.fr/item/AL_2014_53_3_a1/
[1] D. Vakarelov, Dinamicheskaya mereotopologiya. III. Teorii prostranstva-vremeni tipa Uaitkheda. II. Tochechno-baziruemaya model prostranstva, Algebra i logika (to appear)
[2] D. Vakarelov, “Dinamicheskaya mereotopologiya. III. Teorii prostranstva-vremeni tipa Uaitkheda. III. Algebry dinamicheskogo kontakta”, Algebra i logika (to appear)
[3] D. Vakarelov, “Dynamic Mereotopology: A point-free Theory of Changing Regions. I. Stable and unstable mereotopological relations”, Fundam. Inform., 100:1–4 (2010), 159–180 | MR | Zbl
[4] D. Vakarelov, “Dynamic mereotopology. II: Axiomatizing some Whiteheadian type space-time logics”, Proc. 9th conf., AiML 2012 (Copenhagen, Denmark, August 22-25, 2012), Advances in modal logic, 9, eds. Th. Bolander et al., College Publ., London, 2012, 538–558 | MR | Zbl
[5] A. N. Whitehead, The organization of thought: educational and scientific, Williams and Norgate, London, 1917 | Zbl
[6] A. N. Whitehead, An enquiry concerning the principles of natural knowledge, Cambridge Univ. Press, Cambridge, 1919 | Zbl
[7] A. N. Whitehead, The Concept of Nature, Cambridge Univ. Press, Cambridge, 1920 | Zbl
[8] T. de Laguna, “The nature of space-I”, J. Phil., 19 (1922), 393–407 | DOI
[9] T. de Laguna, “The nature of space-II”, J. Phil., 19 (1922), 421–440 | DOI
[10] T. de Laguna, “Point, line and surface as sets of solids”, J. Phil., 19 (1922), 449–461 | DOI
[11] A. N. Whitehead, Process and Reality, An essay in cosmology, Macmillan Co., New York, 1929
[12] P. Simons, Parts: A study in ontology, Clarendon Press, Oxford, 1987
[13] J. Stell, “Boolean connection algebras: A new approach to the region-connection calculus”, Artif. Intell., 122:1/2 (2000), 111–136 | DOI | MR | Zbl
[14] G. Dimov, D. Vakarelov, “Contact Algebras and Region-based Theory of Space. A proximity approach. I”, Fundam. Inform., 74:2/3 (2006), 209–249 | MR | Zbl
[15] G. Dimov, D. Vakarelov, “Contact Algebras and Region-based Theory of Space. A proximity approach. II”, Fundam. Inform., 74:2/3 (2006), 251–282 | MR | Zbl
[16] A. Tarski, “Foundations of the geometry of solids”, Logic, Semantics, metamathematics, Papers from 1923 to 1938, eds. A. Tarski, J. H. Woodger, Clarendon Press, Oxford, 1956, 24–29, (translation of the summary of address given by A. Tarski to the First Polish Math. Congress, Lwów, 1927) | MR
[17] B. Bennett, I. Düntsch, “Axioms, algebras and topology”, Handbook of Spatial Logics, eds. M. Aiello et al., Springer-Verlag, Berlin, 2007, 99–160 | DOI | MR
[18] I. Pratt-Hartmann, “First-order region-based theories of space”, Handbook of spatial logics, eds. M. Aiello et al., Springer-Verlag, Berlin, 2007, 13–97 | DOI | MR
[19] D. Vakarelov, “Region-based theory of space: algebras of regions, representation theory and logics”, Mathematical Problems from Applied Logic, v. II, Int. Math. Ser. (New York), 5, Logics for the XXIst century, eds. Dov M. Gabbay et al., Springer, New York, NY, 2007, 267–348 | DOI | MR | Zbl
[20] T. Hahmann, M. Grüninger, “Region-based theories of space: mereotopology and beyond”, Qualitative spatio-temporal representation and reasoning: Trends and future directions, ed. S. M. Hazarika, IGI Global, 2012, 1–62 | DOI
[21] M. Aiello et al. (eds.), Handbook of spatial logics, Springer-Verlag, Berlin, 2007 | MR | Zbl
[22] D. A. Randell, Z. Cui, A. G. Cohn, “A spatial logic based on regions and connection”, Proceedings of the 3rd International Conference Knowledge Representation and Reasoning, eds. B. Nebel et all., Morgan Kaufmann Publ., Los Allos, CA, 1992, 165–176
[23] A. Cohn, S. Hazarika, “Qualitative spatial representation and reasoning: An overview”, Fundam. Inform., 46:1/2 (2001), 1–29 | MR | Zbl
[24] A. Cohn, J. Renz, “Qualitative spatial representation and reasoning”, Handbook of knowledge representation, eds. F. van Hermelen et al., Elsevier, 2008, 551–596 | DOI
[25] S. Hazarika (ed.), Qualitative spatio-temporal representation and reasoning: Trends and future directions, IGI Global, 2012
[26] A. N. Whitehead, Science and the Modern World, The Great Books of the Western World, 55, The MacMillan Co., New York, 1925
[27] I. Düntsch, D. Vakarelov, “Region-based theory of discrete spaces: A proximity approach”, Proceedings of Fourth International Conference Journées de l'informatique Messine, eds. M. Nadif et all., Metz, France, 2003, 123–129; Ann. Math. Artif. Intell., 49:1–4 (2007), 5–14 | DOI | MR | Zbl
[28] G. Dimov, D. Vakarelov, “Topological representation of precontact algebras”, Relational methods in computer science, 8th International seminar on relational methods in computer science, 3rd International workshop on applications of Kleene algebra, and Workshop of COST Action 274: TARSKI (St. Catharines, ON, Canada, February 22–26, 2005), Selected revised papers, Lecture Notes Comp. Sci., 3929, eds. W. MacCaull et al., Springer-Verlag, Berlin, 2006, 1–16 | DOI | MR | Zbl
[29] Ph. Balbiani, T. Tinchev, D. Vakarelov, “Modal logics for region-based theories of space”, Fundam. Inform., 81:1–3 (2007), 29–82 | MR | Zbl
[30] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge Tracts in Math. Math. Phys., 59, Cambridge Univ. Press, London, 1970 | MR | Zbl
[31] A. Galton, “The mereotopology of disscrete spaces”, Spatial information theory, Lecture Notes Comp. Sci., 1661, eds. C. Freksa, D. M. Mark, Springer-Verlag, Proc. of the International Conference COSIT' 99, 1999, 251–266 | DOI
[32] W. Thron, “Proximity structures and grills”, Math. Ann., 206 (1973), 35–62 | DOI | MR | Zbl
[33] R. Sikorski, Boolean algebras, Springer-Verlag, Berlin a.o., 1964 | MR | Zbl