$P$-spectra of Abelian groups
Algebra i logika, Tome 53 (2014) no. 2, pp. 216-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider four types of subgroups of Abelian groups: arbitrary subgroups ($s$-subgroups), algebraically closed subgroups ($a$-subgroups), pure subgroups ($p$-subgroups), and elementary subgroups ($e$-subgroups). A language $L(X)$ is an extension of a language $L$ by a set $X$ of constants. A language $L_P$ is an extension of $L$ by one unary predicate symbol $P$. For $i\in\{s,a,p,e\}$ let $\Delta_i$ consist of sentences in $L_P$ , where $L$ is the language of Abelian groups, expressing the fact that a predicate $P$ defines a subgroup of type $i$. For a complete theory $T$ of Abelian groups and for $i\in\{s,a,p,e\}$, a cardinal function assigning a cardinal $\lambda$ the supremum of the number of completions of sets $(T^*\cup\{P(a)\mid a\in X\}\cup\Delta_i)$ in the language $(L(X))_P$ for complete extensions $T^*$ of $T$ in the language $L(X)$ for sets $X$ of cardinality $\lambda$ is called the $(P,i)$- spectrum of the theory $T$. For each $i\in\{s,a,p,e\}$, we describe all possible $(P,i)$-spectra of complete theories of Abelian groups.
Keywords: Abelian group, complete theory, $P$-spectrum.
@article{AL_2014_53_2_a5,
     author = {E. A. Palyutin},
     title = {$P$-spectra of {Abelian} groups},
     journal = {Algebra i logika},
     pages = {216--255},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_2_a5/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - $P$-spectra of Abelian groups
JO  - Algebra i logika
PY  - 2014
SP  - 216
EP  - 255
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_2_a5/
LA  - ru
ID  - AL_2014_53_2_a5
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T $P$-spectra of Abelian groups
%J Algebra i logika
%D 2014
%P 216-255
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_2_a5/
%G ru
%F AL_2014_53_2_a5
E. A. Palyutin. $P$-spectra of Abelian groups. Algebra i logika, Tome 53 (2014) no. 2, pp. 216-255. http://geodesic.mathdoc.fr/item/AL_2014_53_2_a5/

[1] E. A. Palyutin, “$P$-stabilnye abelevy gruppy”, Algebra i logika, 52:5 (2013), 606–631 | MR

[2] T. A. Nurmagambetov, “$P$-stabilnost polnykh teorii abelevykh grupp”, XI Mezhrespubl. konf. po matem. logike, Tez. soobschenii, izd-vo KGU, Kazan, 1992, 106

[3] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[4] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., izd-vo “Fizmatlit”, M., 2011

[5] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl

[6] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[7] M. A. Rusaleev, “Kharakterizatsiya $(p,1)$-stabilnykh teorii”, Algebra i logika, 46:3 (2007), 346–359 | MR | Zbl

[8] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl

[9] E. A. Palyutin, “$P$-superstabilnye abelevy gruppy”, Vestnik Karagandinskogo un-ta. Ser. matem., 2013, no. 1(69), 74–80