Automorphisms of divisible rigid groups
Algebra i logika, Tome 53 (2014) no. 2, pp. 206-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is $m$-rigid if there exists a normal series of the form $$ G=G_1>G_2>\ldots>G_m>G_{m+1}=1 $$ in which every factor $G_i/G_{i+1}$ is an Abelian group and is torsion-free as a (right) $\mathbb Z[G/G_i]$-module. A rigid group is one that is $m$-rigid for some $m$. The specified series is determined by a given rigid group uniquely; so it consists of characteristic subgroups and is called a rigid series; the solvability length of a group is exactly $m$. A rigid group $G$ is divisible if all $G_i/G_{i+1}$ are divisible modules over $\mathbb Z[G/G_i]$. The rings $\mathbb Z[G/G_i]$ satisfy the Ore condition, and $Q(G/G_i)$ denote the corresponding (right) division rings. Thus, for a divisible rigid group $G$, the factor $G_i/G_{i+1}$ can be treated as a (right) vector space over $Q(G/G_i)$. We describe the group of all automorphisms of a divisible rigid group, and then a group of normal automorphisms. An automorphism is normal if it keeps all normal subgroups of the given group fixed.
Mots-clés : divisible rigid group
Keywords: group of automorphisms, group of normal automorphisms.
@article{AL_2014_53_2_a4,
     author = {D. V. Ovchinnikov},
     title = {Automorphisms of divisible rigid groups},
     journal = {Algebra i logika},
     pages = {206--215},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_2_a4/}
}
TY  - JOUR
AU  - D. V. Ovchinnikov
TI  - Automorphisms of divisible rigid groups
JO  - Algebra i logika
PY  - 2014
SP  - 206
EP  - 215
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_2_a4/
LA  - ru
ID  - AL_2014_53_2_a4
ER  - 
%0 Journal Article
%A D. V. Ovchinnikov
%T Automorphisms of divisible rigid groups
%J Algebra i logika
%D 2014
%P 206-215
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_2_a4/
%G ru
%F AL_2014_53_2_a4
D. V. Ovchinnikov. Automorphisms of divisible rigid groups. Algebra i logika, Tome 53 (2014) no. 2, pp. 206-215. http://geodesic.mathdoc.fr/item/AL_2014_53_2_a4/

[1] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[2] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[3] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[4] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[5] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[6] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[7] N. S. Romanovskiy, “Presentations for rigid solvable groups”, J. Group Theory, 15:6 (2012), 793–810 | DOI | MR | Zbl

[8] A. Myasnikov, N. Romanovskiy, “Logical aspects of divisible rigid groups” (to appear)

[9] J. Neukirch, “Kennzeichnung der $p$-adischen und der endlichen Zahlkörper”, Invent. Math., 6 (1969), 296–314 | DOI | MR | Zbl

[10] B. A. Romankov, “Normalnye avtomorfizmy diskretnykh grupp”, Sib. matem. zh., 24:4 (1983), 138–149 | MR | Zbl

[11] N. S. Romanovskii, V. Yu. Boluts, “Normalnye avtomorfizmy svobodnykh 2-stupenno razreshimykh pro-$p$-grupp”, Algebra i logika, 32:4 (1993), 441–449 | MR

[12] N. S. Romanovskii, “Normalnye avtomorfizmy svobodnykh razreshimykh pro-$p$-grupp”, Algebra i logika, 36:4 (1997), 803–818 | MR