Rigid metabelian pro-$p$-groups
Algebra i logika, Tome 53 (2014) no. 2, pp. 162-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

A metabelian pro-$p$-group $G$ is rigid if it has a normal series of the form $$ G=G_1\ge G_2\ge G_3=1 $$ such that the factor group $A=G/G_2$ is torsion-free Abelian and $C=G_2$ is torsion-free as a $\mathbb Z_pA$-module. If $G$ is a non-Abelian group, then the subgroup $G_2$, as well as the given series, is uniquely defined by the properties mentioned. An Abelian pro-$p$-group is rigid if it is torsion-free, and as $G_2$ we can take either the trivial subgroup or the entire group. We prove that all rigid $2$-step solvable pro-$p$-groups are mutually universally equivalent. Rigid metabelian pro-$p$-groups can be treated as $2$-graded groups with possible gradings $(1,1)$, $(1,0)$, and $(0,1)$. If a group is $2$-step solvable, then its grading is $(1,1)$. For an Abelian group, there are two options: namely, grading $(1,0)$, if $G_2=1$, and grading $(0,1)$ if $G_2=G$. A morphism between $2$-graded rigid pro-$p$-groups is a homomorphism $\varphi\colon G\to H$ such that $G_i\varphi\le H_i$. It is shown that in the category of $2$-graded rigid pro-$p$-groups, a coproduct operation exists, and we establish its properties.
Keywords: rigid metabelian pro-$p$-group, $2$-graded group.
@article{AL_2014_53_2_a1,
     author = {S. G. Afanas'eva and N. S. Romanovskii},
     title = {Rigid metabelian pro-$p$-groups},
     journal = {Algebra i logika},
     pages = {162--177},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_2_a1/}
}
TY  - JOUR
AU  - S. G. Afanas'eva
AU  - N. S. Romanovskii
TI  - Rigid metabelian pro-$p$-groups
JO  - Algebra i logika
PY  - 2014
SP  - 162
EP  - 177
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_2_a1/
LA  - ru
ID  - AL_2014_53_2_a1
ER  - 
%0 Journal Article
%A S. G. Afanas'eva
%A N. S. Romanovskii
%T Rigid metabelian pro-$p$-groups
%J Algebra i logika
%D 2014
%P 162-177
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_2_a1/
%G ru
%F AL_2014_53_2_a1
S. G. Afanas'eva; N. S. Romanovskii. Rigid metabelian pro-$p$-groups. Algebra i logika, Tome 53 (2014) no. 2, pp. 162-177. http://geodesic.mathdoc.fr/item/AL_2014_53_2_a1/

[1] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR | Zbl

[2] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[3] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[4] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[5] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[6] A. G. Myasnikov, N. S. Romanovskii, “Ob universalnykh teoriyakh zhëstkikh razreshimykh grupp”, Algebra i logika, 50:6 (2011), 802–821 | MR | Zbl

[7] N. S. Romanovskiy, “Presentations for rigid solvable groups”, J. Group Theory, 15:6 (2012), 793–810 | DOI | MR | Zbl

[8] S. G. Melesheva, “Ob uravneniyakh i algebraicheskoi geometrii nad prokonechnymi gruppami”, Algebra i logika, 49:5 (2010), 654–669 | MR | Zbl

[9] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[10] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[11] J. S. Wilson, Profinite groups, Lond. Math. Soc. Monogr., New Ser., 19, Clarendon Press, Oxford, 1998

[12] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl

[13] V. N. Remeslennikov, “Teoremy vlozheniya dlya prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 399–417 | MR | Zbl

[14] N. S. Romanovskii, “O vlozheniyakh Shmelkina dlya abstraktnykh i prokonechnykh grupp”, Algebra i logika, 38:5 (1999), 598–612 | MR