Unifying solutions to systems of equations in finite simple semigroups
Algebra i logika, Tome 53 (2014) no. 1, pp. 109-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $C$ is called an equational domain if every finite union of algebraic sets over $C$ is again an algebraic set. We study a class of finite simple semigroups and find necessary and sufficient conditions for such semigroups to be equational domains.
Keywords: finite simple semigroup, algebraic set.
Mots-clés : equational domain
@article{AL_2014_53_1_a5,
     author = {A. N. Shevlyakov},
     title = {Unifying solutions to systems of equations in finite simple semigroups},
     journal = {Algebra i logika},
     pages = {109--129},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a5/}
}
TY  - JOUR
AU  - A. N. Shevlyakov
TI  - Unifying solutions to systems of equations in finite simple semigroups
JO  - Algebra i logika
PY  - 2014
SP  - 109
EP  - 129
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a5/
LA  - ru
ID  - AL_2014_53_1_a5
ER  - 
%0 Journal Article
%A A. N. Shevlyakov
%T Unifying solutions to systems of equations in finite simple semigroups
%J Algebra i logika
%D 2014
%P 109-129
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a5/
%G ru
%F AL_2014_53_1_a5
A. N. Shevlyakov. Unifying solutions to systems of equations in finite simple semigroups. Algebra i logika, Tome 53 (2014) no. 1, pp. 109-129. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a5/

[1] G. Baumslag, A. Myasnikov, “Algebraic geometry over groups”, Algorithmic problems in groups and semigroups, Based on talks given at the int. conf. (Lincoln, NE, USA, May 11 – May 16, 1998), Trends Math., eds. J.-C. Birget et al., Birkhäuser, Boston, MA, 2000, 35–50 | MR | Zbl

[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. IV. Ekvatsionalnye oblasti i ko-oblasti”, Algebra i logika, 49:6 (2010), 715–756 | MR

[4] G. S. Makanin, “Razreshimost universalnoi i pozitivnoi teorii svobodnoi gruppy”, Izv. AN SSSR. Ser. matem., 48:4 (1984), 735–749 | MR | Zbl

[5] W. D. Maurer, J. L. Rhodes, “A property of finite simple non-abelian groups”, Proc. Am. Math. Soc., 16 (1965), 552–554 | DOI | MR | Zbl

[6] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups, A Festschrift in honor of A. Gaglione. Papers of the conf. (Fairfield, USA, March 2007 in honour of A. Gaglione's 60th birthday), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | DOI | MR | Zbl

[7] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraicheskaya geometriya nad algebraicheskimi sistemami. II. Osnovaniya”, Fundam. prikl. matem., 17:1 (2011/2012), 65–106 | MR

[8] E. S. Lyapin, Polugruppy, Gos. izd-vo fiz.-matem. lit-ry, M., 1960 | MR