Existentially closed subgroups of free nilpotent groups
Algebra i logika, Tome 53 (2014) no. 1, pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal N_c$ be a variety of all nilpotent groups of class at most $c$, and let $N_{r,c}$ be a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $N$ of $N_{r,c}$ for $c\ge3$ is existentially closed in $N_{r,c}$ iff $N$ is a free factor of the group $N_{r,c}$ with respect to the variety $\mathcal N_c$. Consequently, $N\simeq N_{m,c}$, $1\le m\le r$ and $m\ge c-1$.
Keywords: existentially closed subgroup, free nilpotent group, discriminating extension.
@article{AL_2014_53_1_a3,
     author = {V. A. Roman'kov and N. G. Khisamiev},
     title = {Existentially closed subgroups of free nilpotent groups},
     journal = {Algebra i logika},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/}
}
TY  - JOUR
AU  - V. A. Roman'kov
AU  - N. G. Khisamiev
TI  - Existentially closed subgroups of free nilpotent groups
JO  - Algebra i logika
PY  - 2014
SP  - 45
EP  - 59
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/
LA  - ru
ID  - AL_2014_53_1_a3
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%A N. G. Khisamiev
%T Existentially closed subgroups of free nilpotent groups
%J Algebra i logika
%D 2014
%P 45-59
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/
%G ru
%F AL_2014_53_1_a3
V. A. Roman'kov; N. G. Khisamiev. Existentially closed subgroups of free nilpotent groups. Algebra i logika, Tome 53 (2014) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/

[1] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl

[2] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[4] A. Myasnikov, V. Roman'kov, “Verbally closed subgroups of free groups”, J. Group Theory, 1:1 (2014), 29–40 | MR

[5] V. A. Romankov, N. G. Khisamiev, “Verbalno i ekzistentsialno zamknutye podgruppy svobodnykh nilpotentnykh grupp”, Algebra i logika, 52:4 (2013), 502–525 | MR

[6] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[7] P. Hall, Nilpotent groups, Notes of lectures given at the Canadian Mathematical Congress, Summer seminar (Univ. Alberta, Edmonton, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR | Zbl

[8] M. Kholl, Teoriya grupp, IL, M., 1962

[9] G. Higman, E. Scott, Existentially closed groups, Clarendon Press, Oxford, 1988 | MR | Zbl

[10] V. A. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | MR

[11] M. G. Amaglobeli, V. N. Remeslennikov, “$G$-tozhdestva i $G$-mnogoobraziya”, Algebra i logika, 39:3 (2000), 249–272 | MR | Zbl

[12] N. S. Romanovskii, “O neprivodimosti affinnogo prostranstva v algebraicheskoi geometrii nad gruppoi”, Algebra i logika, 52:3 (2013), 386–391 | MR | Zbl

[13] F. Levin, “Generating groups for nilpotent varieties”, J. Aust. Math. Soc., 11 (1970), 28–32 | DOI | MR | Zbl

[14] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i opredelyayuschikh sootnoshenii, Nauka, M., 1974 | MR | Zbl

[15] R. C. Lyndon, “A theorem of Friedrichs”, Mich. Math. J., 3:1 (1955), 27–29 | DOI | MR