Existentially closed subgroups of free nilpotent groups
Algebra i logika, Tome 53 (2014) no. 1, pp. 45-59

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal N_c$ be a variety of all nilpotent groups of class at most $c$, and let $N_{r,c}$ be a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $N$ of $N_{r,c}$ for $c\ge3$ is existentially closed in $N_{r,c}$ iff $N$ is a free factor of the group $N_{r,c}$ with respect to the variety $\mathcal N_c$. Consequently, $N\simeq N_{m,c}$, $1\le m\le r$ and $m\ge c-1$.
Keywords: existentially closed subgroup, free nilpotent group, discriminating extension.
@article{AL_2014_53_1_a3,
     author = {V. A. Roman'kov and N. G. Khisamiev},
     title = {Existentially closed subgroups of free nilpotent groups},
     journal = {Algebra i logika},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/}
}
TY  - JOUR
AU  - V. A. Roman'kov
AU  - N. G. Khisamiev
TI  - Existentially closed subgroups of free nilpotent groups
JO  - Algebra i logika
PY  - 2014
SP  - 45
EP  - 59
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/
LA  - ru
ID  - AL_2014_53_1_a3
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%A N. G. Khisamiev
%T Existentially closed subgroups of free nilpotent groups
%J Algebra i logika
%D 2014
%P 45-59
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/
%G ru
%F AL_2014_53_1_a3
V. A. Roman'kov; N. G. Khisamiev. Existentially closed subgroups of free nilpotent groups. Algebra i logika, Tome 53 (2014) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a3/