Absolute closedness of torsion-free Abelian groups in the class of metabelian groups
Algebra i logika, Tome 53 (2014) no. 1, pp. 15-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dominion of a subgroup $H$ of a group $G$ in a class $M$ is the set of all elements $a\in G$ whose images are equal for all pairs of homomorphisms from $G$ to each group in $M$ that coincide on $H$. A group $H$ is absolutely closed in a class $M$ if, for any group $G$ in $M$, every inclusion $H\le G$ implies that the dominion of $H$ in $G$ (in $M$) coincides with $H$. We deal with dominions in torsion-free Abelian subgroups of metabelian groups. It is proved that every nontrivial torsion-free Abelian subgroup is not absolutely closed in the class of metabelian groups. It is stated that if a torsion-free subgroup $H$ of a metabelian group $G$ and the commutator subgroup $G'$ have trivial intersection, then the dominion of $H$ in $G$ (in the class of metabelian groups) coincides with $H$.
Keywords: quasivariety, metabelian group, Abelian group, dominion, absolutely closed subgroup.
@article{AL_2014_53_1_a1,
     author = {A. I. Budkin},
     title = {Absolute closedness of torsion-free {Abelian} groups in the class of metabelian groups},
     journal = {Algebra i logika},
     pages = {15--25},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Absolute closedness of torsion-free Abelian groups in the class of metabelian groups
JO  - Algebra i logika
PY  - 2014
SP  - 15
EP  - 25
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a1/
LA  - ru
ID  - AL_2014_53_1_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Absolute closedness of torsion-free Abelian groups in the class of metabelian groups
%J Algebra i logika
%D 2014
%P 15-25
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a1/
%G ru
%F AL_2014_53_1_a1
A. I. Budkin. Absolute closedness of torsion-free Abelian groups in the class of metabelian groups. Algebra i logika, Tome 53 (2014) no. 1, pp. 15-25. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a1/

[1] A. I. Budkin, “Reshëtki dominionov universalnykh algebr”, Algebra i logika, 46:1 (2007), 26–45 | MR | Zbl

[2] A. I. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1/2 (2004), 107–127 | DOI | MR | Zbl

[3] S. A. Shakhova, “O reshëtkakh dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 44:2 (2005), 238–251 | MR | Zbl

[4] S. A. Shakhova, “Usloviya distributivnosti reshëtok dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 45:4 (2006), 484–499 | MR | Zbl

[5] S. A. Shakhova, “Ob odnom svoistve operatsii peresecheniya v reshetkakh dominionov kvazimnogoobrazii abelevykh grupp”, Izvestiya Alt. gos. un-ta, 2010, no. 1-1(65), 41–43

[6] S. A. Shakhova, “O suschestvovanii reshetki dominionov v kvazimnogoobraziyakh abelevykh grupp”, Izvestiya Alt. gos. un-ta, 2011, no. 1-1(69), 31–33

[7] A. I. Budkin, “Dominiony universalnykh algebr i proektivnye svoistva”, Algebra i logika, 47:5 (2008), 541–557 | MR | Zbl

[8] A. Magidin, “Dominions in varieties of nilpotent groups”, Commun. Algebra, 28:3 (2000), 1241–1270 | DOI | MR | Zbl

[9] A. Magidin, “Absolutely closed nil-2 groups”, Algebra Univers., 42:1/2 (1999), 61–77 | DOI | MR | Zbl

[10] A. I. Budkin, “O dominionakh v kvazimnogoobraziyakh metabelevykh grupp”, Sib. matem. zh., 51:3 (2010), 498–505 | MR | Zbl

[11] A. I. Budkin, “O dominione polnoi podgruppy metabelevoi gruppy”, Izvestiya Alt. gos. un-ta, 2010, no. 1-2(65), 15–19

[12] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. gos. un-ta, Barnaul, 2002

[13] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[14] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[15] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[16] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[17] P. M. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56:1 (1988), 1–17 | MR | Zbl

[18] P. Hall, “Finiteness conditions for soluble groups”, Proc. Lond. Math. Soc. III Ser., 4:16 (1954), 419–436 | DOI | MR | Zbl

[19] A. I. Budkin, “O dominionakh abelevykh podgrupp metabelevykh grupp”, Algebra i logika, 51:5 (2012), 608–622 | MR | Zbl