The uniformization problem for $\Sigma$-predicates in a~hereditarily finite list superstructure over the real exponential field
Algebra i logika, Tome 53 (2014) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a uniformization theorem for $\Sigma$-predicates and show that there exists a universal function for $\Sigma$-definable functions in a hereditarily finite list superstructure over the real exponential field.
Keywords: $\Sigma$-definability, uniformization theorem, hereditarily finite list superstructure.
@article{AL_2014_53_1_a0,
     author = {S. A. Aleksandrova},
     title = {The uniformization problem for $\Sigma$-predicates in a~hereditarily finite list superstructure over the real exponential field},
     journal = {Algebra i logika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2014_53_1_a0/}
}
TY  - JOUR
AU  - S. A. Aleksandrova
TI  - The uniformization problem for $\Sigma$-predicates in a~hereditarily finite list superstructure over the real exponential field
JO  - Algebra i logika
PY  - 2014
SP  - 3
EP  - 14
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2014_53_1_a0/
LA  - ru
ID  - AL_2014_53_1_a0
ER  - 
%0 Journal Article
%A S. A. Aleksandrova
%T The uniformization problem for $\Sigma$-predicates in a~hereditarily finite list superstructure over the real exponential field
%J Algebra i logika
%D 2014
%P 3-14
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2014_53_1_a0/
%G ru
%F AL_2014_53_1_a0
S. A. Aleksandrova. The uniformization problem for $\Sigma$-predicates in a~hereditarily finite list superstructure over the real exponential field. Algebra i logika, Tome 53 (2014) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/AL_2014_53_1_a0/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[2] A. S. Morozov, M. V. Korovina, “O $\Sigma$-opredelimosti schëtnykh struktur nad veschestvennymi, kompleksnymi chislami i kvaternionami”, Algebra i logika, 47:3 (2008), 335–363 | MR | Zbl

[3] A. S. Morozov, “O nekotorykh predstavleniyakh polya veschestvennykh chisel”, Algebra i logika, 51:1 (2012), 96–128 | MR | Zbl

[4] C. S. Goncharov, D. I. Sviridenko, “$\Sigma$-programmirovanie”, Logikomatematicheskie osnovy problemy MOZ, Cb., Vychisl. sist., 107, In-t matem. SO RAN, Novosibirsk, 1985, 3–29 | MR

[5] V. A. Rudnev, “Ob universalnoi rekursivnoi funktsii na dopustimykh mnozhestvakh”, Algebra i logika, 25:4 (1986), 425–435 | MR | Zbl

[6] A. I. Stukachev, “Teorema ob uniformizatsii v nasledstvenno konechnykh nadstroikakh”, Obobschënnaya vychislimost i opredelimost, Cb., Vychisl. sist., 161, In-t matem. SO RAN, Novosibirsk, 1998, 3–14 | MR

[7] A. N. Khisamiev, “$\Sigma$-odnorodnye algebraicheskie sistemy i $\Sigma$-funktsii. I”, Algebra i logika, 50:5 (2011), 659–684 | MR | Zbl

[8] V. G. Puzarenko, “K vychislimosti na spetsialnykh modelyakh”, Sib. matem. zh., 46:1 (2005), 185–208 | MR | Zbl

[9] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Am. Math. Soc., 9:4 (1996), 1051–1094 | DOI | MR | Zbl

[10] A. G. Khovanskii, “Ob odnom klasse sistem transtsendentnykh uravnenii”, Dokl. AN SSSR, 255:4 (1980), 804–807 | MR

[11] A. Macintyre, A. Wilkie, “On the decidability of the real exponential field”, Kreiseliana: about and around Georg Kreisel, ed. P. Odifreddi, A. K. Peters, Wellesley, MA, 1996, 441–467 | MR | Zbl

[12] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “HF-computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper, A. Sorbi, World Scientific, Singapore, 2011, 173–248 | MR

[13] M. V. Korovina, “Obobschënnaya vychislimost funktsii na veschestvennykh chislakh”, Logicheskie metody v programmirovanii, Cb., Vychisl. sist., 133, 1990, 38–67 | MR | Zbl

[14] M. V. Korovina, Obobschënnaya vychislimost nad deistvitelnymi chislami, Diss. soisk. uch. step. k.f.-m.n., In-t matem. SO RAN, 1996

[15] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 2-oe izd., Ekonomika, M., 2000 | MR

[16] T. Servi, On the first order theory of real exponentiation, PhD thesis, ENS Pisa, 2006