Boolean algebras of regular languages
Algebra i logika, Tome 52 (2013) no. 6, pp. 676-711
Voir la notice de l'article provenant de la source Math-Net.Ru
Some of the Boolean algebras of regular languages of finite and infinite words are characterized up to isomorphism. It is shown that classes of regular languages related to such characterizations are decidable.
Keywords:
Boolean algebra, Frechet ideal, regular language, aperiodic language, quasiaperiodic language, $d$-quasiaperiodic language, $\omega$-regular language, $\omega$-aperiodic language.
@article{AL_2013_52_6_a2,
author = {A. S. Konovalov and V. L. Selivanov},
title = {Boolean algebras of regular languages},
journal = {Algebra i logika},
pages = {676--711},
publisher = {mathdoc},
volume = {52},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/}
}
A. S. Konovalov; V. L. Selivanov. Boolean algebras of regular languages. Algebra i logika, Tome 52 (2013) no. 6, pp. 676-711. http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/