Boolean algebras of regular languages
Algebra i logika, Tome 52 (2013) no. 6, pp. 676-711

Voir la notice de l'article provenant de la source Math-Net.Ru

Some of the Boolean algebras of regular languages of finite and infinite words are characterized up to isomorphism. It is shown that classes of regular languages related to such characterizations are decidable.
Keywords: Boolean algebra, Frechet ideal, regular language, aperiodic language, quasiaperiodic language, $d$-quasiaperiodic language, $\omega$-regular language, $\omega$-aperiodic language.
@article{AL_2013_52_6_a2,
     author = {A. S. Konovalov and V. L. Selivanov},
     title = {Boolean algebras of regular languages},
     journal = {Algebra i logika},
     pages = {676--711},
     publisher = {mathdoc},
     volume = {52},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/}
}
TY  - JOUR
AU  - A. S. Konovalov
AU  - V. L. Selivanov
TI  - Boolean algebras of regular languages
JO  - Algebra i logika
PY  - 2013
SP  - 676
EP  - 711
VL  - 52
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/
LA  - ru
ID  - AL_2013_52_6_a2
ER  - 
%0 Journal Article
%A A. S. Konovalov
%A V. L. Selivanov
%T Boolean algebras of regular languages
%J Algebra i logika
%D 2013
%P 676-711
%V 52
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/
%G ru
%F AL_2013_52_6_a2
A. S. Konovalov; V. L. Selivanov. Boolean algebras of regular languages. Algebra i logika, Tome 52 (2013) no. 6, pp. 676-711. http://geodesic.mathdoc.fr/item/AL_2013_52_6_a2/