Two questions in the Kourovka Notebook
Algebra i logika, Tome 52 (2013) no. 5, pp. 632-637
G. Glauberman's $Z^*$-theorem [J. Algebra, 4, No. 3, 403–420 (1966)] and the theorem of Bender are two most important tools for local analysis in the theory of finite groups. The $Z^*$-theorem generalizes the known Burnside and Brauer–Suzuki theorems on finite groups with cyclic and quaternion Sylow $2$-subgroups. Whether these theorems are valid in a class of periodic groups is unknown. We prove that the $Z^*$-theorem is invalid in the class of all periodic groups. In particular, this gives negative answers to questions of A. V. Borovik and V. D. Mazurov [see Unsolved Problems in Group Theory, The Kourovka Notebook, Questions 11.13 and 17.71a].
Keywords:
finite group, Glauberman's $Z^*$-theorem.
@article{AL_2013_52_5_a7,
author = {A. I. Sozutov and E. B. Durakov},
title = {Two questions in the {Kourovka} {Notebook}},
journal = {Algebra i logika},
pages = {632--637},
year = {2013},
volume = {52},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a7/}
}
A. I. Sozutov; E. B. Durakov. Two questions in the Kourovka Notebook. Algebra i logika, Tome 52 (2013) no. 5, pp. 632-637. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a7/
[1] G. Glauberman, “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl
[2] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985 | MR | Zbl
[3] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf
[4] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[5] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[6] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Beskonechnye gruppy s involyutsiyami, Sib. federal. un-t, Krasnoyarsk, 2011