Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_5_a0, author = {N. A. Bazhenov}, title = {Computable numberings of the class of {Boolean} algebras with distinguished endomorphisms}, journal = {Algebra i logika}, pages = {535--552}, publisher = {mathdoc}, volume = {52}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/} }
N. A. Bazhenov. Computable numberings of the class of Boolean algebras with distinguished endomorphisms. Algebra i logika, Tome 52 (2013) no. 5, pp. 535-552. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/
[1] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl
[2] V. P. Dobritsa, “Slozhnost indeksnogo mnozhestva konstruktivnoi modeli”, Algebra i logika, 22:4 (1983), 269–276 | MR
[3] W. White, “On the complexity of categoricity in computable structures”, Math. Logic Quarterly, 49:6 (2003), 603–614 | DOI | MR | Zbl
[4] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR | Zbl
[5] W. Calvert, “The isomorphism problem for classes of computable fields”, Arch. Math. Log., 43:3 (2004), 327–336 | DOI | MR | Zbl
[6] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl
[7] W. Calvert, J. F. Knight, “Classification from a computable viewpoint”, Bull. Symb. Log., 12:2 (2006), 191–218 | DOI | MR | Zbl
[8] V. Kalvert, V. S. Kharizanova, Dzh. F. Nait, S. Miller, “Indeksnye mnozhestva vychislimykh modelei”, Algebra i logika, 45:5 (2006), 538–574 | MR | Zbl
[9] W. Calvert, E. Fokina, S. S. Goncharov, J. F. Knight, O. Kudinov, A. S. Morozov, V. Puzarenko, “Index sets for classes of high rank structures”, J. Symb. Log., 72:4 (2007), 1418–1432 | DOI | MR | Zbl
[10] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem. zh., 48:5 (2007), 1167–1179 | MR | Zbl
[11] E. N. Pavlovskii, “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. matem. zh., 49:3 (2008), 635–649 | MR | Zbl
[12] E. B. Fokina, “Index sets for some classes of structures”, Ann. Pure Appl. Logic, 157:2–3 (2009), 139–147 | DOI | MR | Zbl
[13] B. F. Csima, A. Montalbán, R. A. Shore, “Boolean algebras, Tarski invariants, and index sets”, Notre Dame J. Formal Logic, 47:1 (2006), 1–23 | DOI | MR | Zbl
[14] N. T. Kogabaev, “Slozhnost nekotorykh estestvennykh problem na klasse vychislimykh $I$-algebr”, Sib. matem. zh., 47:2 (2006), 352–360 | MR | Zbl
[15] S. S. Goncharov, “Avtoustoichivost modelei i abelevykh grupp”, Algebra i logika, 19:1 (1980), 23–44 | MR | Zbl
[16] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[17] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl
[18] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[19] N. T. Kogabaev, “Universalnaya numeratsiya konstruktivnykh $I$-algebr”, Algebra i logika, 40:5 (2001), 561–579 | MR | Zbl
[20] N. T. Kogabaev, “Klass proektivnykh ploskostei nevychislim”, Algebra i logika, 47:4 (2008), 428–455 | MR | Zbl
[21] R. R. Tukhbatullina, “Avtoustoichivost bulevoi algebry $\mathfrak B_\omega$, obogaschennoi avtomorfizmom”, Vestnik NGU. Ser. matem., mekh., inform., 10:3 (2010), 110–118 | Zbl
[22] N. A. Bazhenov, R. R. Tukhbatullina, “Konstruktiviziruemost bulevoi algebry $\mathfrak B(\omega)$ s vydelennym avtomorfizmom”, Algebra i logika, 51:5 (2012), 579–607 | MR | Zbl