Computable numberings of the class of Boolean algebras with distinguished endomorphisms
Algebra i logika, Tome 52 (2013) no. 5, pp. 535-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with computable Boolean algebras having a fixed finite number $\lambda$ of distinguished endomorphisms (briefly, $E_\lambda$-algebras). It is shown that the index set of $E_\lambda$-algebras is $\Pi^0_\2$-complete. It is proved that the class of all computable $E_\lambda$-algebras has a $\Delta^0_3$-computable numbering but does not have a $\Delta^0_2$-computable numbering, up to computable isomorphism. Also for the class of all computable $E_\lambda$-algebras, we explore whether there exist hyperarithmetical Friedberg numberings, up to $\Delta^0_\alpha$-computable isomorphism.
Keywords: computable Boolean algebra with distinguished endomorphisms, computable numbering, Friedberg numbering, index set, isomorphism problem.
@article{AL_2013_52_5_a0,
     author = {N. A. Bazhenov},
     title = {Computable numberings of the class of {Boolean} algebras with distinguished endomorphisms},
     journal = {Algebra i logika},
     pages = {535--552},
     publisher = {mathdoc},
     volume = {52},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/}
}
TY  - JOUR
AU  - N. A. Bazhenov
TI  - Computable numberings of the class of Boolean algebras with distinguished endomorphisms
JO  - Algebra i logika
PY  - 2013
SP  - 535
EP  - 552
VL  - 52
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/
LA  - ru
ID  - AL_2013_52_5_a0
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%T Computable numberings of the class of Boolean algebras with distinguished endomorphisms
%J Algebra i logika
%D 2013
%P 535-552
%V 52
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/
%G ru
%F AL_2013_52_5_a0
N. A. Bazhenov. Computable numberings of the class of Boolean algebras with distinguished endomorphisms. Algebra i logika, Tome 52 (2013) no. 5, pp. 535-552. http://geodesic.mathdoc.fr/item/AL_2013_52_5_a0/

[1] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl

[2] V. P. Dobritsa, “Slozhnost indeksnogo mnozhestva konstruktivnoi modeli”, Algebra i logika, 22:4 (1983), 269–276 | MR

[3] W. White, “On the complexity of categoricity in computable structures”, Math. Logic Quarterly, 49:6 (2003), 603–614 | DOI | MR | Zbl

[4] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR | Zbl

[5] W. Calvert, “The isomorphism problem for classes of computable fields”, Arch. Math. Log., 43:3 (2004), 327–336 | DOI | MR | Zbl

[6] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl

[7] W. Calvert, J. F. Knight, “Classification from a computable viewpoint”, Bull. Symb. Log., 12:2 (2006), 191–218 | DOI | MR | Zbl

[8] V. Kalvert, V. S. Kharizanova, Dzh. F. Nait, S. Miller, “Indeksnye mnozhestva vychislimykh modelei”, Algebra i logika, 45:5 (2006), 538–574 | MR | Zbl

[9] W. Calvert, E. Fokina, S. S. Goncharov, J. F. Knight, O. Kudinov, A. S. Morozov, V. Puzarenko, “Index sets for classes of high rank structures”, J. Symb. Log., 72:4 (2007), 1418–1432 | DOI | MR | Zbl

[10] E. B. Fokina, “Indeksnye mnozhestva razreshimykh modelei”, Sib. matem. zh., 48:5 (2007), 1167–1179 | MR | Zbl

[11] E. N. Pavlovskii, “Otsenka algoritmicheskoi slozhnosti klassov vychislimykh modelei”, Sib. matem. zh., 49:3 (2008), 635–649 | MR | Zbl

[12] E. B. Fokina, “Index sets for some classes of structures”, Ann. Pure Appl. Logic, 157:2–3 (2009), 139–147 | DOI | MR | Zbl

[13] B. F. Csima, A. Montalbán, R. A. Shore, “Boolean algebras, Tarski invariants, and index sets”, Notre Dame J. Formal Logic, 47:1 (2006), 1–23 | DOI | MR | Zbl

[14] N. T. Kogabaev, “Slozhnost nekotorykh estestvennykh problem na klasse vychislimykh $I$-algebr”, Sib. matem. zh., 47:2 (2006), 352–360 | MR | Zbl

[15] S. S. Goncharov, “Avtoustoichivost modelei i abelevykh grupp”, Algebra i logika, 19:1 (1980), 23–44 | MR | Zbl

[16] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[17] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[18] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[19] N. T. Kogabaev, “Universalnaya numeratsiya konstruktivnykh $I$-algebr”, Algebra i logika, 40:5 (2001), 561–579 | MR | Zbl

[20] N. T. Kogabaev, “Klass proektivnykh ploskostei nevychislim”, Algebra i logika, 47:4 (2008), 428–455 | MR | Zbl

[21] R. R. Tukhbatullina, “Avtoustoichivost bulevoi algebry $\mathfrak B_\omega$, obogaschennoi avtomorfizmom”, Vestnik NGU. Ser. matem., mekh., inform., 10:3 (2010), 110–118 | Zbl

[22] N. A. Bazhenov, R. R. Tukhbatullina, “Konstruktiviziruemost bulevoi algebry $\mathfrak B(\omega)$ s vydelennym avtomorfizmom”, Algebra i logika, 51:5 (2012), 579–607 | MR | Zbl