Verbally and existentially closed subgroups of free nilpotent groups
Algebra i logika, Tome 52 (2013) no. 4, pp. 502-525

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal N_c$ be the variety of all nilpotent groups of class at most $c$ and $N_{r,c}$ a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $H$ of $N_{r,c}$ ($r,c\ge1$) is verbally closed iff $H$ is a free factor (or, equivalently, an algebraically closed subgroup, a retract) of the group $N_{r,c}$. In addition, for $c\ge4$ and $m$, every free factor $N_{m,c}$ of the group $N_{c-1,c}$ in the variety $\mathcal N_c$ is not existentially closed in the group $N_{m+i,c}$ for $i=1,2,\dots$. It is stated that for $r\ge3$ and $2\le c\le3$ every free factor $N_{m,c}$, $2\le m\le r$, in $\mathcal N_c$ is existentially closed in the group $N_{r,c}$.
Keywords: verbally closed subgroup, existentially closed subgroup, free nilpotent group.
Mots-clés : retract
@article{AL_2013_52_4_a4,
     author = {V. A. Roman'kov and N. G. Khisamiev},
     title = {Verbally and existentially closed subgroups of free nilpotent groups},
     journal = {Algebra i logika},
     pages = {502--525},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/}
}
TY  - JOUR
AU  - V. A. Roman'kov
AU  - N. G. Khisamiev
TI  - Verbally and existentially closed subgroups of free nilpotent groups
JO  - Algebra i logika
PY  - 2013
SP  - 502
EP  - 525
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/
LA  - ru
ID  - AL_2013_52_4_a4
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%A N. G. Khisamiev
%T Verbally and existentially closed subgroups of free nilpotent groups
%J Algebra i logika
%D 2013
%P 502-525
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/
%G ru
%F AL_2013_52_4_a4
V. A. Roman'kov; N. G. Khisamiev. Verbally and existentially closed subgroups of free nilpotent groups. Algebra i logika, Tome 52 (2013) no. 4, pp. 502-525. http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/