Verbally and existentially closed subgroups of free nilpotent groups
Algebra i logika, Tome 52 (2013) no. 4, pp. 502-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal N_c$ be the variety of all nilpotent groups of class at most $c$ and $N_{r,c}$ a free nilpotent group of finite rank $r$ and nilpotency class $c$. It is proved that a subgroup $H$ of $N_{r,c}$ ($r,c\ge1$) is verbally closed iff $H$ is a free factor (or, equivalently, an algebraically closed subgroup, a retract) of the group $N_{r,c}$. In addition, for $c\ge4$ and $m$, every free factor $N_{m,c}$ of the group $N_{c-1,c}$ in the variety $\mathcal N_c$ is not existentially closed in the group $N_{m+i,c}$ for $i=1,2,\dots$. It is stated that for $r\ge3$ and $2\le c\le3$ every free factor $N_{m,c}$, $2\le m\le r$, in $\mathcal N_c$ is existentially closed in the group $N_{r,c}$.
Keywords: verbally closed subgroup, existentially closed subgroup, free nilpotent group.
Mots-clés : retract
@article{AL_2013_52_4_a4,
     author = {V. A. Roman'kov and N. G. Khisamiev},
     title = {Verbally and existentially closed subgroups of free nilpotent groups},
     journal = {Algebra i logika},
     pages = {502--525},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/}
}
TY  - JOUR
AU  - V. A. Roman'kov
AU  - N. G. Khisamiev
TI  - Verbally and existentially closed subgroups of free nilpotent groups
JO  - Algebra i logika
PY  - 2013
SP  - 502
EP  - 525
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/
LA  - ru
ID  - AL_2013_52_4_a4
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%A N. G. Khisamiev
%T Verbally and existentially closed subgroups of free nilpotent groups
%J Algebra i logika
%D 2013
%P 502-525
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/
%G ru
%F AL_2013_52_4_a4
V. A. Roman'kov; N. G. Khisamiev. Verbally and existentially closed subgroups of free nilpotent groups. Algebra i logika, Tome 52 (2013) no. 4, pp. 502-525. http://geodesic.mathdoc.fr/item/AL_2013_52_4_a4/

[1] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[2] W. R. Scott, “Algebraically closed groups”, Proc. Am. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl

[3] A. J. Macintyre, “On algebraically closed groups”, Ann. Math. (2), 96 (1972), 53–97 | DOI | MR | Zbl

[4] P. Eklof, G. Sabbagh, “Model completions and modules”, Ann. Math. Logic, 2:3 (1971), 251–295 | DOI | MR | Zbl

[5] O. V. Belegradek, “Ob algebraicheski zamknutykh gruppakh”, Algebra i logika, 13:3 (1974), 239–255 | MR | Zbl

[6] O. V. Belegradek, “Elementary properties of algebraically closed groups”, Fundam. Math., 98 (1978), 83–101 | MR | Zbl

[7] M. Ziegler, “Algebraisch abgeschlossene Gruppen”, Word problems, v. II, Stud. Logic Found. Math., 95, eds. S. I. Adian, W. W. Boone, G. Higman, North Holland, Amsterdam, 1980, 449–576 | DOI | MR

[8] G. Higman, E. Scott, Existentially closed groups, Clarendon Press, Oxford, 1988 | MR | Zbl

[9] V. N. Remeslennikov, V. A. Romankov, “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn., Ser. Algebra. Topol. Geom. Fundam. napravl., 21, VINITI, M., 1983, 3–79 | MR | Zbl

[10] G. Baumslag, F. Levin, “Algebraically closed torsion-free nilpotent groups of class 2”, Commun. Algebra, 4:6 (1976), 533–560 | DOI | MR | Zbl

[11] F. Leinen, “Existentially closed groups in special classes”, Finite and locally finite groups, Proc. of the NATO Adv. Stud. Inst. (Istanbul, Turkey, 14–27 August 1994), NATO ASI Ser., Ser. C, Math. Phys. Sci., 471, eds. Hartley B. et al., Kluwer Acad. Publ., Dordrecht, 1995, 285–326 | MR | Zbl

[12] A. Myasnikov, V. Roman'kov, “Verbally closed subgroups of free groups”, J. Group Theory (to appear); 10 Jan. 2012, 12 pp., arXiv: 1201.0497.v2[math.GR]

[13] G. M. Bergman, “Supports of derivations, free factorizations and ranks of fixed subgroups in free groups”, Trans. Am. Math. Soc., 351:4 (1999), 1531–1550 | DOI | MR | Zbl

[14] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[15] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i opredelyayuschikh sootnoshenii, Nauka, M., 1974 | MR | Zbl

[16] G. Baumslag, A. Myasnikov, V. Roman'kov, “Two theorems about equationally noetherian groups”, J. Algebra, 194:2 (1997), 654–664 | DOI | MR | Zbl

[17] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[18] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[19] P. Hall, Nilpotent groups. Notes of lectures given at the Canadian Mathematical Congress, Summer seminar (Univ. Alberta, Edmonton, 12–30 August 1957), Queen Mary College Math. Notes, London, Queen Mary College (Univ.), London, 1969 | MR

[20] M. Kholl, Teoriya grupp, IL, M., 1962

[21] F. Levin, “Generating groups for nilpotent varieties”, J. Aust. Math. Soc., 11 (1970), 28–32 | DOI | MR | Zbl

[22] L. G. Kovács, M. F. Newman, P. F. Pentony, “Generating groups of nilpotent varieties”, Bull. Am. Math. Soc., 74 (1968), 968–971 | DOI | MR | Zbl

[23] M. R. Vaughan-Lee, “Generating groups of nilpotent varieties”, Bull. Aust. Math. Soc., 3 (1970), 145–154 | DOI | MR | Zbl