Irreducibility of an affine space in algebraic geometry over a group
Algebra i logika, Tome 52 (2013) no. 3, pp. 386-391

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem which states that if $G$ is an equationally Noetherian group that is locally approximated by finite $p$-groups for each prime $p$ then an affine space $G^n$ in a respective Zariski topology is irreducible for any $n$. The hypothesis of the theorem is satisfied by free groups, free soluble groups, free nilpotent groups, finitely generated torsion-free nilpotent groups, and rigid soluble groups. Also we introduce corrections to a lemma on valuations, which has been used in some of the author's previous works.
Keywords: Zariski topology, equationally Noetherian group, algebraic geometry over group.
Mots-clés : affine space
@article{AL_2013_52_3_a6,
     author = {N. S. Romanovskii},
     title = {Irreducibility of an affine space in algebraic geometry over a~group},
     journal = {Algebra i logika},
     pages = {386--391},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Irreducibility of an affine space in algebraic geometry over a group
JO  - Algebra i logika
PY  - 2013
SP  - 386
EP  - 391
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/
LA  - ru
ID  - AL_2013_52_3_a6
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Irreducibility of an affine space in algebraic geometry over a group
%J Algebra i logika
%D 2013
%P 386-391
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/
%G ru
%F AL_2013_52_3_a6
N. S. Romanovskii. Irreducibility of an affine space in algebraic geometry over a group. Algebra i logika, Tome 52 (2013) no. 3, pp. 386-391. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/