Irreducibility of an affine space in algebraic geometry over a~group
Algebra i logika, Tome 52 (2013) no. 3, pp. 386-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem which states that if $G$ is an equationally Noetherian group that is locally approximated by finite $p$-groups for each prime $p$ then an affine space $G^n$ in a respective Zariski topology is irreducible for any $n$. The hypothesis of the theorem is satisfied by free groups, free soluble groups, free nilpotent groups, finitely generated torsion-free nilpotent groups, and rigid soluble groups. Also we introduce corrections to a lemma on valuations, which has been used in some of the author's previous works.
Keywords: Zariski topology, equationally Noetherian group, algebraic geometry over group.
Mots-clés : affine space
@article{AL_2013_52_3_a6,
     author = {N. S. Romanovskii},
     title = {Irreducibility of an affine space in algebraic geometry over a~group},
     journal = {Algebra i logika},
     pages = {386--391},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Irreducibility of an affine space in algebraic geometry over a~group
JO  - Algebra i logika
PY  - 2013
SP  - 386
EP  - 391
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/
LA  - ru
ID  - AL_2013_52_3_a6
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Irreducibility of an affine space in algebraic geometry over a~group
%J Algebra i logika
%D 2013
%P 386-391
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/
%G ru
%F AL_2013_52_3_a6
N. S. Romanovskii. Irreducibility of an affine space in algebraic geometry over a~group. Algebra i logika, Tome 52 (2013) no. 3, pp. 386-391. http://geodesic.mathdoc.fr/item/AL_2013_52_3_a6/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Discriminating completions of hyperbolic groups”, Geom. Dedicata, 92 (2002), 115–143 | DOI | MR | Zbl

[4] V. N. Remeslennikov, N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva v metabelevoi gruppe”, Algebra i logika, 44:5 (2005), 601–621 | MR | Zbl

[5] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[6] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[7] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR | Zbl

[8] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl