Collapsing probabilistic hierarchies. I
Algebra i logika, Tome 52 (2013) no. 2, pp. 236-254
Voir la notice de l'article provenant de la source Math-Net.Ru
We study hierarchies of validity problems for prefix fragments in probability logic with quantifiers over propositional formulas, denoted $\mathcal{QPL}$, and its versions. It is proved that if a subfield $\mathfrak F$ of reals is definable in the standard model of arithmetic by a second-order formula without set quantifiers, then the validity problem over $\mathfrak F$-valued probability structures for $\Sigma_4$-$\mathcal{QPL}$-sentences is $\Pi^1_1$-complete; as a consequence, the corresponding hierarchy of validity problems collapses. Moreover, in proving this fact, we state that an $\Pi^1_1$-полнота $\forall\exists$-theory of Presburger arithmetic with a single free unary predicate is $\Pi^1_1$-complete, which generalizes a well-known result of Halpern relating to the entire theory mentioned.
Keywords:
probability logic, computational complexity, expressiveness.
Mots-clés : quantifiers over propositions
Mots-clés : quantifiers over propositions
@article{AL_2013_52_2_a6,
author = {S. O. Speranskii},
title = {Collapsing probabilistic {hierarchies.~I}},
journal = {Algebra i logika},
pages = {236--254},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a6/}
}
S. O. Speranskii. Collapsing probabilistic hierarchies. I. Algebra i logika, Tome 52 (2013) no. 2, pp. 236-254. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a6/