Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_2_a6, author = {S. O. Speranskii}, title = {Collapsing probabilistic {hierarchies.~I}}, journal = {Algebra i logika}, pages = {236--254}, publisher = {mathdoc}, volume = {52}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a6/} }
S. O. Speranskii. Collapsing probabilistic hierarchies.~I. Algebra i logika, Tome 52 (2013) no. 2, pp. 236-254. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a6/
[1] J. Y. Halpern, “Presburger arithmetic with unary predicates is $\Pi^1_1$ complete”, J. Symb. Log., 56:2 (1991), 637–642 | DOI | MR | Zbl
[2] M. Abadi, J. Y. Halpern, “Decidability and expressiveness for first-order logics of probability”, Inf. Comput., 112:1 (1994), 1–36 | DOI | MR | Zbl
[3] S. O. Speranski, “Complexity for probability logic with quantifiers over propositions”, J. Log. Comput., 2012 | DOI | Zbl
[4] R. Fagin, J. Y. Halpern, N. Megiddo, “A logic for reasoning about probabilities”, Inf. Comput., 87:1–2 (1990), 78–128 | DOI | MR | Zbl
[5] S. O. Speranskii, “Kvantifikatsiya po propozitsionalnym formulam v veroyatnostnoi logike: voprosy razreshimosti”, Algebra i logika, 50:4 (2011), 533–546 | MR | Zbl
[6] J. Y. Halpern, “An analysis of first-order logics of probability”, Artif. Intell., 46:3 (1990), 311–350 | DOI | MR | Zbl
[7] D. Harel, A. Pnueli, J. Stavi, “Propositional dynamic logic of nonregular programs”, J. Comput. Syst. Sci., 26:2 (1983), 222–243 | DOI | MR | Zbl
[8] C. Smorynski, Self-Reference and modal logic, Universitext, Springer-Verlag, New York etc., 1985 | DOI | MR
[9] S. G. Simpson, Subsystems of second order arithmetic, Perspect. Logic, 2nd ed., Cambrige Univ. Press, Cambridge; Assoc. Symb. Log., Urbana, IL, 2009 | MR | Zbl