Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups
Algebra i logika, Tome 52 (2013) no. 2, pp. 219-235
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G_\Gamma$ be a partially commutative group corresponding to a finite simple graph $\Gamma$. Given a finite simple graph $T$, an existential graph formula $\phi(T)$ is constructed. We describe an algorithm that answers the question whether $\phi(T)$ is satisfied on $G_\Gamma$, for an arbitrary simple graph $T$. Using this algorithm, we show that the universal equivalence problem for partially commutative class two nilpotent groups is algorithmically decidable.
Keywords:
partially commutative nilpotent group, universal theory, satisfiability, decidability.
Mots-clés : binomial ring
Mots-clés : binomial ring
@article{AL_2013_52_2_a5,
author = {A. A. Mishchenko and A. V. Treier},
title = {Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups},
journal = {Algebra i logika},
pages = {219--235},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a5/}
}
TY - JOUR AU - A. A. Mishchenko AU - A. V. Treier TI - Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups JO - Algebra i logika PY - 2013 SP - 219 EP - 235 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a5/ LA - ru ID - AL_2013_52_2_a5 ER -
%0 Journal Article %A A. A. Mishchenko %A A. V. Treier %T Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups %J Algebra i logika %D 2013 %P 219-235 %V 52 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a5/ %G ru %F AL_2013_52_2_a5
A. A. Mishchenko; A. V. Treier. Algorithmic decidability of the universal equivalence problem for partially commutative nilpotent groups. Algebra i logika, Tome 52 (2013) no. 2, pp. 219-235. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a5/