Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
Algebra i logika, Tome 52 (2013) no. 2, pp. 203-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

The zero-divisor graph of an associative ring $R$ is a graph such that its vertices are all nonzero (one-sided and two-sided) zero-divisors, and moreover, two distinct vertices $x$ and $y$ are joined by an edge iff $xy=0$ or $yx=0$. We give a complete description of varieties of associative rings in which all finite rings have Hamiltonian zero-divisor graphs. Also finite decomposable rings with unity having Hamiltonian zero-divisor graphs are characterized.
Keywords: zero-divisor graph, Hamiltonian graph, variety of associative rings, finite ring.
@article{AL_2013_52_2_a4,
     author = {Yu. N. Mal'tsev and A. S. Kuz'mina},
     title = {Describing ring varieties in which all finite rings have {Hamiltonian} zero-divisor graphs},
     journal = {Algebra i logika},
     pages = {203--218},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/}
}
TY  - JOUR
AU  - Yu. N. Mal'tsev
AU  - A. S. Kuz'mina
TI  - Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
JO  - Algebra i logika
PY  - 2013
SP  - 203
EP  - 218
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/
LA  - ru
ID  - AL_2013_52_2_a4
ER  - 
%0 Journal Article
%A Yu. N. Mal'tsev
%A A. S. Kuz'mina
%T Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
%J Algebra i logika
%D 2013
%P 203-218
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/
%G ru
%F AL_2013_52_2_a4
Yu. N. Mal'tsev; A. S. Kuz'mina. Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs. Algebra i logika, Tome 52 (2013) no. 2, pp. 203-218. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/

[1] S. P. Redmond, “The zero-divisor graph of a noncommutative ring”, Int. J. Commut. Rings, 1:4 (2002), 203–211

[2] I. Beck, “Coloring of commutative rings”, J. Algebra, 116:1 (1988), 208–226 | DOI | MR | Zbl

[3] D. F. Anderson, P. S. Livingston, “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434–447 | DOI | MR | Zbl

[4] S. Akbari, H. R. Maimani, S. Yassemi, “When zero-divisor graph is planar or a complete $r$-partite graph”, J. Algebra, 270:1 (2003), 169–180 | DOI | MR | Zbl

[5] R. Belshoff, J. Chapman, “Planar zero-divisor graphs”, J. Algebra, 316:1 (2007), 471–480 | DOI | MR | Zbl

[6] A. S. Kuz'mina, Yu. N. Maltsev, “Nilpotent finite rings with planar zero-divisor graphs”, Asian-Eur. J. Math., 1:4 (2008), 565–574 | DOI | MR

[7] A. S. Kuzmina, “Opisanie konechnykh nenilpotentnykh kolets, imeyuschikh planarnye grafy delitelei nulya”, Diskret. matem., 21:4 (2009), 60–75 | DOI | MR

[8] A. S. Kuzmina, “Finite rings with Eulerian zero-divisor graphs”, J. Algebra Appl., 11:3 (2012), 101–110 | DOI | MR

[9] S. Akbari, A. Mohammadian, “Zero-divisor graphs of non-commutative rings”, J. Algebra, 296:2 (2006), 462–479 | DOI | MR | Zbl

[10] A. S. Kuzmina, Yu. N. Maltsev, “Konechnye koltsa s polnymi dvudolnymi grafami delitelei nulya”, Izv. vuzov. Matem., 2012, no. 3, 24–30 | MR | Zbl

[11] S. Akbari, A. Mohammadian, “On the zero-divisor graph of a commutative ring”, J. Algebra, 274:2 (2004), 847–855 | DOI | MR | Zbl

[12] A. S. Kuzmina, “O nekotorykh svoistvakh mnogoobrazii kolets, v kotorykh konechnye koltsa odnoznachno opredelyayutsya svoimi grafami delitelei nulya”, Sib. elektron. matem. izv., 8 (2011), 179–190 http://semr.math.nsc.ru/v8/p179-190.pdf | MR

[13] E. V. Zhuravlev, A. S. Kuzmina, Yu. N. Maltsev, “Opisanie mnogoobrazii kolets, v kotorykh konechnye koltsa odnoznachno zadayutsya svoimi grafami delitelei nulya”, Izv. vuzov. Matem., 2013, no. 6, 13–24

[14] I. V. Lvov, “O mnogoobraziya assotsiativnykh kolets. I”, Algebra i logika, 12:3 (1973), 269–297 | MR

[15] V. P. Elizarov, Konechnye koltsa, Gelios ARV, M., 2006

[16] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[17] I. V. Lvov, Teorema Brauna o radikale konechnoporozhdennoi PI-algebry, preprint No 63, In-t matem. SO AN SSSR, Novosibirsk, 1984