Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs
Algebra i logika, Tome 52 (2013) no. 2, pp. 203-218
Voir la notice de l'article provenant de la source Math-Net.Ru
The zero-divisor graph of an associative ring $R$ is a graph such that its vertices are all nonzero (one-sided and two-sided) zero-divisors, and moreover, two distinct vertices $x$ and $y$ are joined by an edge iff $xy=0$ or $yx=0$. We give a complete description of varieties of associative rings in which all finite rings have Hamiltonian zero-divisor graphs. Also finite decomposable rings with unity having Hamiltonian zero-divisor graphs are characterized.
Keywords:
zero-divisor graph, Hamiltonian graph, variety of associative rings, finite ring.
@article{AL_2013_52_2_a4,
author = {Yu. N. Mal'tsev and A. S. Kuz'mina},
title = {Describing ring varieties in which all finite rings have {Hamiltonian} zero-divisor graphs},
journal = {Algebra i logika},
pages = {203--218},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/}
}
TY - JOUR AU - Yu. N. Mal'tsev AU - A. S. Kuz'mina TI - Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs JO - Algebra i logika PY - 2013 SP - 203 EP - 218 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/ LA - ru ID - AL_2013_52_2_a4 ER -
Yu. N. Mal'tsev; A. S. Kuz'mina. Describing ring varieties in which all finite rings have Hamiltonian zero-divisor graphs. Algebra i logika, Tome 52 (2013) no. 2, pp. 203-218. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a4/