An application of the method of orthogonal completeness in graded ring theory
Algebra i logika, Tome 52 (2013) no. 2, pp. 145-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of orthogonal completeness was devised by K. I. Beidar and A. V. Mikhalev in the 1970s. Initially, the method was applied in ring theory and was mainly used to derive theorems for semiprime rings by reducing the semiprime case to the prime. In the 1980s, the same authors developed a theory of orthogonal completeness for arbitrary algebraic systems. The theory of orthogonal completeness is applied to group-graded rings. To use the Beidar–Mikhalev theorems on orthogonal completeness, a graded ring is treated as an algebraic system with a ring signature augmented by the operation of taking homogeneous components and by homogeneity predicates. The graded analog of Herstein's theorem for prime rings with derivations, as well as its generalization to semiprime rings based on the method of orthogonal completeness, is proved. It is shown that every homogeneous derivation of a graded ring extends to a homogeneous derivation of its complete graded right ring of quotients.
Keywords: graded rings of quotients, orthogonal completeness, rings with derivation.
@article{AL_2013_52_2_a1,
     author = {A. L. Kanunnikov},
     title = {An application of the method of orthogonal completeness in graded ring theory},
     journal = {Algebra i logika},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_2_a1/}
}
TY  - JOUR
AU  - A. L. Kanunnikov
TI  - An application of the method of orthogonal completeness in graded ring theory
JO  - Algebra i logika
PY  - 2013
SP  - 145
EP  - 154
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_2_a1/
LA  - ru
ID  - AL_2013_52_2_a1
ER  - 
%0 Journal Article
%A A. L. Kanunnikov
%T An application of the method of orthogonal completeness in graded ring theory
%J Algebra i logika
%D 2013
%P 145-154
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_2_a1/
%G ru
%F AL_2013_52_2_a1
A. L. Kanunnikov. An application of the method of orthogonal completeness in graded ring theory. Algebra i logika, Tome 52 (2013) no. 2, pp. 145-154. http://geodesic.mathdoc.fr/item/AL_2013_52_2_a1/

[1] K. I. Beidar, A. V. Mikhalëv, “Ortogonalnaya polnota i algebraicheskie sistemy”, Uspekhi matem. n., 40:6(246) (1985), 79–115 | MR | Zbl

[2] A. V. Mikhalëv, “Ortogonalno polnye mnogosortnye sistemy”, DAN SSSR, 289:6 (1986), 1304–1308 | MR

[3] A. L. Kanunnikov, “Ortogonalnoe graduirovannoe popolnenie graduirovanno polupervichnykh kolets”, Fund. prikl. matem., 17:7 (2011/2012), 117–150

[4] I. N. Balaba, A. L. Kanunnikov, A. V. Mikhalëv, “Koltsa chastnykh graduirovannykh assotsiativnykh kolets. I”, Fund. prikl. matem., 17:2 (2011/2012), 3–74

[5] I. N. Herstein, “A note on derivations”, Canad. Math. Bull., 21 (1978), 369–370 | DOI | MR | Zbl

[6] K. I. Beidar, W. S. Martindale, A. V. Mikhalev, Rings with generalized identities, Pure Appl. Math., Marcel Dekker, 196, Marcel Dekker, New York, 1996 | MR | Zbl

[7] K. Tewari, “Complexes over a complete algebra of quotients”, Can. J. Math., 19 (1967), 40–57 | DOI | MR | Zbl