Rank and order of a~finite group admitting a~Frobenius group of automorphisms
Algebra i logika, Tome 52 (2013) no. 1, pp. 99-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a finite group $G$ admits a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$. For the case where $G$ is a finite $p$-group such that $G=[G,F]$, it is proved that the order of $G$ is bounded above in terms of the order of $H$ and the order of the fixed-point subgroup $C_G(H)$ of the complement, while the rank of $G$ is bounded above in terms of $|H|$ and the rank of $C_G(H)$. Earlier, such results were known under the stronger assumption that the kernel $F$ acts on $G$ fixed-point-freely. As a corollary, for the case where $G$ is an arbitrary finite group with a Frobenius group $FH$ of automorphisms of coprime order with kernel $F$ and complement $H$, estimates are obtained which are of the form $|G|\le|C_G(F)|\cdot f(|H|,|C_G(H)|)$ for the order, and of the form $\mathbf r(G)\le\mathbf r(C_G(F))+g(|H|,\mathbf r(C_G(H)))$ for the rank, where $f$ and $g$ are some functions of two variables.
Keywords: finite group, rank, order
Mots-clés : Frobenius group, automorphism, $p$-group.
@article{AL_2013_52_1_a7,
     author = {E. I. Khukhro},
     title = {Rank and order of a~finite group admitting {a~Frobenius} group of automorphisms},
     journal = {Algebra i logika},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a7/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - Rank and order of a~finite group admitting a~Frobenius group of automorphisms
JO  - Algebra i logika
PY  - 2013
SP  - 99
EP  - 108
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a7/
LA  - ru
ID  - AL_2013_52_1_a7
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T Rank and order of a~finite group admitting a~Frobenius group of automorphisms
%J Algebra i logika
%D 2013
%P 99-108
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a7/
%G ru
%F AL_2013_52_1_a7
E. I. Khukhro. Rank and order of a~finite group admitting a~Frobenius group of automorphisms. Algebra i logika, Tome 52 (2013) no. 1, pp. 99-108. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a7/

[1] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[2] E. I. Khukhro, “Graded Lie rings with many commuting components and an application to 2-Frobenius groups”, Bull. Lond. Math. Soc., 40:5 (2008), 907–912 | DOI | MR | Zbl

[3] N. Yu. Makarenko, P. Shumyatsky, “Frobenius groups as groups of automorphisms”, Proc. Am. Math. Soc., 138:10 (2010), 3425–3436 | DOI | MR | Zbl

[4] E. I. Khukhro, “Nilpotentnaya dlina konechnoi gruppy, dopuskayuschei frobeniusovu gruppu avtomorfizmov s yadrom bez nepodvizhnykh tochek”, Algebra i logika, 49:6 (2010), 819–833 | MR

[5] E. I. Khukhro, N. Yu. Makarenko, P. Shumyatsky, “Frobenius groups of automorphisms and their fixed points”, Forum Math. (to appear)

[6] N. Yu. Makarenko, E. I. Khukhro, P. Shumyatskii, “Nepodvizhnye tochki frobeniusovykh grupp avtomorfizmov”, Dokl. RAN, 437:1 (2011), 20–23 | MR | Zbl

[7] P. Shumyatsky, “On the exponent of a finite group with an automorphism group of order twelve”, J. Algebra, 331:1 (2011), 482–489 | DOI | MR | Zbl

[8] P. Shumyatsky, “Positive laws in fixed points of automorphisms of finite groups”, J. Pure Appl. Algebra, 215:11 (2011), 2559–2566 | DOI | MR | Zbl

[9] E. I. Khukhro, “Fitting height of a finite group with a Frobenius group of automorphisms”, J. Algebra, 366 (2012), 1–11 | DOI | MR | Zbl

[10] E. I. Khukhro, “Avtomorfizmy konechnykh $p$-grupp, dopuskayuschikh rasscheplenie”, Algebra i logika, 51:3 (2012), 392–411 | MR | Zbl

[11] A. Lubotzky, A. Mann, “Powerful $p$-groups, I: Finite groups”, J. Algebra, 105:2 (1987), 484–505 | DOI | MR | Zbl

[12] L. G. Kovács, “On finite soluble groups”, Math. Z., 103 (1968), 37–39 | DOI | MR | Zbl

[13] P. Longobardi, M. Maj, “On the number of generators of a finite group”, Arch. Math., 50:2 (1988), 110–112 | DOI | MR | Zbl

[14] R. M. Guralnick, “On the number of generators of a finite group”, Arch. Math., 53:6 (1989), 521–523 | DOI | MR | Zbl

[15] E. I. Khukhro, V. D. Mazurov, “Finite groups with an automorphism of prime order whose centralizer has small rank”, J. Algebra, 301:2 (2006), 474–492 | DOI | MR | Zbl

[16] P. Shumyatsky, “Involutory automorphisms of finite groups and their centralizers”, Arch. Math., 71:6 (1998), 425–432 | DOI | MR | Zbl