Involutions in groups of exponent~12
Algebra i logika, Tome 52 (2013) no. 1, pp. 92-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a group of exponent 12, in which the order of a product of any two involutions is distinct from 4, is locally finite.
Keywords: periodic group, locally finite group.
@article{AL_2013_52_1_a6,
     author = {V. D. Mazurov and A. S. Mamontov},
     title = {Involutions in groups of exponent~12},
     journal = {Algebra i logika},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - A. S. Mamontov
TI  - Involutions in groups of exponent~12
JO  - Algebra i logika
PY  - 2013
SP  - 92
EP  - 98
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/
LA  - ru
ID  - AL_2013_52_1_a6
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A A. S. Mamontov
%T Involutions in groups of exponent~12
%J Algebra i logika
%D 2013
%P 92-98
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/
%G ru
%F AL_2013_52_1_a6
V. D. Mazurov; A. S. Mamontov. Involutions in groups of exponent~12. Algebra i logika, Tome 52 (2013) no. 1, pp. 92-98. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/

[1] M. Hall (Jr.), “Solution of the Burnside problem for exponent six”, Ill. J. Math., 2 (1958), 764–786 | MR | Zbl

[2] R. Baer, “Engelsche Elemente Noetherscher Gruppen”, Math. Ann., 133:3 (1957), 256–270 | DOI | MR | Zbl

[3] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math. (2), 82 (1968), 191–212 | DOI | MR

[4] J. Alperin, R. Lyons, “On conjugacy classes of $p$-elements”, J. Algebrav, 19 (1971), 536–537 | DOI | MR | Zbl

[5] A. S. Mamontov, “Analog teoremy Bera–Suzuki dlya beskonechnykh grupp”, Sib. matem. zh., 45:2 (2004), 394–398 | MR | Zbl

[6] A. I. Sozutov, “Ob odnom obobschenii teoremy Bera–Sudzuki”, Sib. matem. zh., 41:3 (2000), 674–675 | MR | Zbl

[7] The GAP Group, GAP – Groups, algorithms, and programming, Vers. 4.4.12, , 2008 http://www.gap-system.org

[8] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–238 | Zbl

[9] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta, ser. matem., 1940, no. 10, 166–170 | MR | Zbl