Involutions in groups of exponent 12
Algebra i logika, Tome 52 (2013) no. 1, pp. 92-98

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a group of exponent 12, in which the order of a product of any two involutions is distinct from 4, is locally finite.
Keywords: periodic group, locally finite group.
@article{AL_2013_52_1_a6,
     author = {V. D. Mazurov and A. S. Mamontov},
     title = {Involutions in groups of exponent~12},
     journal = {Algebra i logika},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - A. S. Mamontov
TI  - Involutions in groups of exponent 12
JO  - Algebra i logika
PY  - 2013
SP  - 92
EP  - 98
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/
LA  - ru
ID  - AL_2013_52_1_a6
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A A. S. Mamontov
%T Involutions in groups of exponent 12
%J Algebra i logika
%D 2013
%P 92-98
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/
%G ru
%F AL_2013_52_1_a6
V. D. Mazurov; A. S. Mamontov. Involutions in groups of exponent 12. Algebra i logika, Tome 52 (2013) no. 1, pp. 92-98. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a6/