Integral closure of a~valuation ring in a~finite extension
Algebra i logika, Tome 52 (2013) no. 1, pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is THEOREM 1. If a minimal polynomial $f$ for $\theta$ over $F$ is $v$-separable, then there exists a nonzero element $\pi\in R$ such that $\pi S\le R[\theta]$.
Keywords: valued field, $v$-separable polynomial.
Mots-clés : minimal polynomial
@article{AL_2013_52_1_a5,
     author = {Yu. L. Ershov},
     title = {Integral closure of a~valuation ring in a~finite extension},
     journal = {Algebra i logika},
     pages = {84--91},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Integral closure of a~valuation ring in a~finite extension
JO  - Algebra i logika
PY  - 2013
SP  - 84
EP  - 91
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/
LA  - ru
ID  - AL_2013_52_1_a5
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Integral closure of a~valuation ring in a~finite extension
%J Algebra i logika
%D 2013
%P 84-91
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/
%G ru
%F AL_2013_52_1_a5
Yu. L. Ershov. Integral closure of a~valuation ring in a~finite extension. Algebra i logika, Tome 52 (2013) no. 1, pp. 84-91. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/

[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[2] R. Dedekind, “Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen”, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 23 (1878), 3–23

[3] M. Kumar, S. K. Khanduja, “A generalization of Dedekind criterion”, Commun. Algebra, 35:5 (2007), 1479–1486 | DOI | MR | Zbl

[4] Yu. L. Ershov, “Kriterii Dedekinda dlya proizvolnykh kolets normirovaniya”, Dokl. RAN, 410:2 (2006), 158–160 | MR | Zbl

[5] S. K. Khanduja, M. Kumar, “On Dedekind criterion and simple extensions of valuation rings”, Commun. Algebra, 38:2 (2010), 684–696 | DOI | MR | Zbl

[6] J. Montes, E. Nart, “On a theorem of Ore”, J. Algebra, 146:2 (1992), 318–334 | DOI | MR | Zbl

[7] G. Dzh. Yanush, Algebraicheskie chislovye polya, Nauchnaya kniga, Novosibirsk, 2001

[8] S. Leng, Algebra, Mir, M., 1968

[9] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh”, Sib. matem. zh., 47:6 (2006), 1258–1264 | MR | Zbl

[10] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR

[11] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, izd. 6, Fizmatlit, M., 2011