Integral closure of a valuation ring in a finite extension
Algebra i logika, Tome 52 (2013) no. 1, pp. 84-91
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result of the paper is THEOREM 1. If a minimal polynomial $f$ for $\theta$ over $F$ is $v$-separable, then there exists a nonzero element $\pi\in R$ such that $\pi S\le R[\theta]$.
Keywords:
valued field, $v$-separable polynomial.
Mots-clés : minimal polynomial
Mots-clés : minimal polynomial
@article{AL_2013_52_1_a5,
author = {Yu. L. Ershov},
title = {Integral closure of a~valuation ring in a~finite extension},
journal = {Algebra i logika},
pages = {84--91},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/}
}
Yu. L. Ershov. Integral closure of a valuation ring in a finite extension. Algebra i logika, Tome 52 (2013) no. 1, pp. 84-91. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/