Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2013_52_1_a5, author = {Yu. L. Ershov}, title = {Integral closure of a~valuation ring in a~finite extension}, journal = {Algebra i logika}, pages = {84--91}, publisher = {mathdoc}, volume = {52}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/} }
Yu. L. Ershov. Integral closure of a~valuation ring in a~finite extension. Algebra i logika, Tome 52 (2013) no. 1, pp. 84-91. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a5/
[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000
[2] R. Dedekind, “Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen”, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 23 (1878), 3–23
[3] M. Kumar, S. K. Khanduja, “A generalization of Dedekind criterion”, Commun. Algebra, 35:5 (2007), 1479–1486 | DOI | MR | Zbl
[4] Yu. L. Ershov, “Kriterii Dedekinda dlya proizvolnykh kolets normirovaniya”, Dokl. RAN, 410:2 (2006), 158–160 | MR | Zbl
[5] S. K. Khanduja, M. Kumar, “On Dedekind criterion and simple extensions of valuation rings”, Commun. Algebra, 38:2 (2010), 684–696 | DOI | MR | Zbl
[6] J. Montes, E. Nart, “On a theorem of Ore”, J. Algebra, 146:2 (1992), 318–334 | DOI | MR | Zbl
[7] G. Dzh. Yanush, Algebraicheskie chislovye polya, Nauchnaya kniga, Novosibirsk, 2001
[8] S. Leng, Algebra, Mir, M., 1968
[9] Yu. L. Ershov, “Teoremy o nepreryvnosti kornei mnogochlenov v normirovannykh polyakh”, Sib. matem. zh., 47:6 (2006), 1258–1264 | MR | Zbl
[10] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR
[11] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, izd. 6, Fizmatlit, M., 2011