Recognizability of alternating groups by spectrum
Algebra i logika, Tome 52 (2013) no. 1, pp. 57-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a group is the set of its element orders. A finite group $G$ is said to be recognizable by spectrum if every finite group that has the same spectrum as $G$ is isomorphic to $G$. It is proved that simple alternating groups An are recognizable by spectrum, for $n\ne6,10$. This implies that every finite group whose spectrum coincides with that of a finite non-Abelian simple group has at most one non-Abelian composition factor.
Keywords: finite group, alternating group, spectrum of group, recognizability by spectrum.
Mots-clés : simple group
@article{AL_2013_52_1_a3,
     author = {I. B. Gorshkov},
     title = {Recognizability of alternating groups by spectrum},
     journal = {Algebra i logika},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Recognizability of alternating groups by spectrum
JO  - Algebra i logika
PY  - 2013
SP  - 57
EP  - 63
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/
LA  - ru
ID  - AL_2013_52_1_a3
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Recognizability of alternating groups by spectrum
%J Algebra i logika
%D 2013
%P 57-63
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/
%G ru
%F AL_2013_52_1_a3
I. B. Gorshkov. Recognizability of alternating groups by spectrum. Algebra i logika, Tome 52 (2013) no. 1, pp. 57-63. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/