Recognizability of alternating groups by spectrum
Algebra i logika, Tome 52 (2013) no. 1, pp. 57-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a group is the set of its element orders. A finite group $G$ is said to be recognizable by spectrum if every finite group that has the same spectrum as $G$ is isomorphic to $G$. It is proved that simple alternating groups An are recognizable by spectrum, for $n\ne6,10$. This implies that every finite group whose spectrum coincides with that of a finite non-Abelian simple group has at most one non-Abelian composition factor.
Keywords: finite group, alternating group, spectrum of group, recognizability by spectrum.
Mots-clés : simple group
@article{AL_2013_52_1_a3,
     author = {I. B. Gorshkov},
     title = {Recognizability of alternating groups by spectrum},
     journal = {Algebra i logika},
     pages = {57--63},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/}
}
TY  - JOUR
AU  - I. B. Gorshkov
TI  - Recognizability of alternating groups by spectrum
JO  - Algebra i logika
PY  - 2013
SP  - 57
EP  - 63
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/
LA  - ru
ID  - AL_2013_52_1_a3
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%T Recognizability of alternating groups by spectrum
%J Algebra i logika
%D 2013
%P 57-63
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/
%G ru
%F AL_2013_52_1_a3
I. B. Gorshkov. Recognizability of alternating groups by spectrum. Algebra i logika, Tome 52 (2013) no. 1, pp. 57-63. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a3/

[1] A. S. Kondratev, V. D. Mazurov, “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. matem. zh., 41:2 (2000), 359–369 | MR | Zbl

[2] A. V. Zavarnitsin, “Raspoznavanie po mnozhestvu poryadkov elementov znakoperemennykh grupp stepeni $r+1$ i $r+2$ dlya prostogo $r$ i gruppy stepeni 16”, Algebra i logika, 39:6 (2000), 648–661 | MR | Zbl

[3] R. Brandl, W. Shi, “Finite groups whose element orders are consecutive integers”, J. Algebra, 143:2 (1991), 388–400 | DOI | MR | Zbl

[4] V. D. Mazurov, “Raspoznavanie konechnykh grupp po mnozhestvu poryadkov ikh elementov”, Algebra i logika, 37:6 (1998), 651–666 | MR | Zbl

[5] Changguo Shao, Qinhui Jiang, “A new characterization of $A_{22}$ by its spectrum”, Commun. Algebra, 38:6 (2010), 2138–2141 | DOI | MR | Zbl

[6] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh simmetricheskikh i znakoperemennykh grupp”, Algebra i logika, 38:3 (1999), 296–315 | MR | Zbl

[7] I. A. Vakula, “O stroenii konechnykh grupp, izospektralnykh znakoperemennoi gruppe”, Tr. IMM UrO RAN, 16, no. 3, 2010, 45–60

[8] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[9] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[10] E. I. Khukhro, Nilpotent groups and their automorphisms, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[11] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami eë grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl