Pronormality and strong pronormality of subgroups
Algebra i logika, Tome 52 (2013) no. 1, pp. 22-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is said to be pronormal if, for any element $g\in G$, subgroups $H$ and $H^g$ are conjugate in $\langle H,H^g\rangle$. A subgroup $H$ of a group $G$ is said to be strongly pronormal if, for any subgroup $K\le H$ and any element $g\in G$, there exists an element $x\in\langle H,K^g\rangle$ such that $K^{gx}\le H$. Many known examples of pronormal subgroups, namely, normal subgroups, maximal subgroups, Sylow subgroups of finite groups, and Hall subgroups of finite soluble groups, will also exemplify strongly pronormal subgroups. It is shown that Carter subgroups of finite groups (which are always pronormal) are not strongly pronormal in general, even in soluble groups.
Mots-clés : pronormal group
Keywords: strongly pronormal group, Carter subgroup, finite group.
@article{AL_2013_52_1_a1,
     author = {E. P. Vdovin and D. O. Revin},
     title = {Pronormality and strong pronormality of subgroups},
     journal = {Algebra i logika},
     pages = {22--33},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2013_52_1_a1/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - D. O. Revin
TI  - Pronormality and strong pronormality of subgroups
JO  - Algebra i logika
PY  - 2013
SP  - 22
EP  - 33
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2013_52_1_a1/
LA  - ru
ID  - AL_2013_52_1_a1
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A D. O. Revin
%T Pronormality and strong pronormality of subgroups
%J Algebra i logika
%D 2013
%P 22-33
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2013_52_1_a1/
%G ru
%F AL_2013_52_1_a1
E. P. Vdovin; D. O. Revin. Pronormality and strong pronormality of subgroups. Algebra i logika, Tome 52 (2013) no. 1, pp. 22-33. http://geodesic.mathdoc.fr/item/AL_2013_52_1_a1/

[1] E. P. Vdovin, “Karterovy podgruppy v konechnykh pochti prostykh gruppakh”, Algebra i logika, 46:2 (2007), 157–216 | MR | Zbl

[2] E. P. Vdovin, D. O. Revin, “Teoremy silovskogo tipa”, Uspekhi matem. nauk, 66:5(401) (2011), 3–46 | DOI | MR | Zbl

[3] D. O. Revin, E. P. Vdovin, “Generalizations of the Sylow theorem”, Groups St. Andrews 2009, Selected papers of the conference (University of Bath, Bath, UK, August 1–15, 2009), v. II, London Math. Soc. Lect. Note Ser., 388, ed. Campbell C. M. et al., Cambridge Univ. Press, Cambridge, 2011, 488–519 | MR | Zbl

[4] E. P. Vdovin, D. O. Revin, “O pronormalnosti khollovykh podgrupp”, Sib. matem. zh., 54:1 (2013), 35–43 | Zbl

[5] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[6] R. W. Carter, “Nilpotent self-normalizing subgroups of soluble groups”, Math. Z., 75 (1961), 136–139 | DOI | MR | Zbl

[7] K. Doerk, T. Hawkes, Finite soluble groups, De Gruyter Expo. Math., 4, W. de Gruyter, Berlin etc., 1992 | MR | Zbl

[8] I. M. Isaacs, Character theory of finite groups, Pure Appl. Math., 69, Acad. Press, New York–San Francisco–London, 1976 | MR | Zbl