Product varieties of $m$-groups
Algebra i logika, Tome 51 (2012) no. 6, pp. 722-733.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new concept of mimicking is introduced. We point out representations that mimic a variety $\mathcal A$ of Abelian $m$-groups and a variety $\mathcal I$ of $m$-groups defined by an identity $x_*=x^{-1}$. It is proved that if a variety $\mathcal U$ of $m$-groups is generated by some class of $m$-groups, and a variety $\mathcal V$ of $m$-groups is mimicked by some class of $m$-groups, then their product $\mathcal{U\cdot V}$ is generated by wreath products of groups in the respective classes. For every natural $n$, we construct $m$-groups generating varieties $\mathcal I_n=(\mathcal I^{n-1})\cdot\mathcal I$ and $\mathcal A_n=(\mathcal A^{n-1})\cdot\mathcal A$.
Mots-clés : $m$-group
Keywords: representation, mimicking, wreath product, product of varieties.
@article{AL_2012_51_6_a1,
     author = {A. V. Zenkov},
     title = {Product varieties of $m$-groups},
     journal = {Algebra i logika},
     pages = {722--733},
     publisher = {mathdoc},
     volume = {51},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_6_a1/}
}
TY  - JOUR
AU  - A. V. Zenkov
TI  - Product varieties of $m$-groups
JO  - Algebra i logika
PY  - 2012
SP  - 722
EP  - 733
VL  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_6_a1/
LA  - ru
ID  - AL_2012_51_6_a1
ER  - 
%0 Journal Article
%A A. V. Zenkov
%T Product varieties of $m$-groups
%J Algebra i logika
%D 2012
%P 722-733
%V 51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_6_a1/
%G ru
%F AL_2012_51_6_a1
A. V. Zenkov. Product varieties of $m$-groups. Algebra i logika, Tome 51 (2012) no. 6, pp. 722-733. http://geodesic.mathdoc.fr/item/AL_2012_51_6_a1/

[1] M. Giraudet, J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49:4 (1999), 743–766 | DOI | MR | Zbl

[2] M. Giraudet, F. Lucas, “Groups à moitié ordonnés”, Fundam. Math., 139:2 (1991), 75–89 | MR | Zbl

[3] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[4] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Math. Its Appl. (Dordrecht), 307, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl

[5] A. M. W. Glass, Partially ordered groups, Ser. Algebra, 7, World Sci. Press, Singapore, 1999 | DOI | MR | Zbl

[6] N. V. Bayanova, O. V. Nikonova, “Reversivnye avtomorfizmy reshetochno uporyadochennykh grupp”, Sib. matem. zh., 36:4 (1995), 763–768 | MR | Zbl

[7] S. V. Varaksin, A. V. Zenkov, “O predstavleniyakh $m$-grupp”, Sib. matem. zh. (to appear)

[8] A. V. Zenkov, “O $m$-tranzitivnykh gruppakh”, Matem. zametki (to appear)

[9] A. V. Zenkov, “Ob abelevykh gruppakh monotonnykh podstanovok”, Algebra i logika, 50:4 (2011), 497–503 | MR | Zbl

[10] A. V. Zenkov, “Spleteniya grupp monotonnykh podstanovok”, Sib. matem. zh., 52:6 (2011), 1264–1270 | MR | Zbl

[11] A. M. W. Glass, W. C. Holland, S. H. McCleary, “The structure of $\ell$-group varieties”, Algebra Univers., 10:1 (1980), 1–20 | DOI | MR | Zbl