Thompson's conjecture for some finite simple groups with connected prime graph
Algebra i logika, Tome 51 (2012) no. 6, pp. 683-721.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ be an even number and either $q=8$ or $q>9$. We prove a conjecture of Thompson (Problem 12.38 in the Kourovka Notebook) for an infinite class of finite simple groups of Lie type. More precisely, if $S\in\{C_n(q),B_n(q)\}$, then every finite group $G$ for which $Z(G)=1$ and $N(G)=N(S)$ will be isomorphic to $S$. Note that $N(G)=\{n\colon G$ has a conjugacy class of size $n\}$. The main consequence of this result is showing the validity of $AAM$'s conjecture (Problem 16.1 in the Kourovka Notebook) for the groups under study.
Mots-clés : simple group, conjugacy class
Keywords: minimal normal subgroup, centralizer.
@article{AL_2012_51_6_a0,
     author = {N. Ahanjideh},
     title = {Thompson's conjecture for some finite simple groups with connected prime graph},
     journal = {Algebra i logika},
     pages = {683--721},
     publisher = {mathdoc},
     volume = {51},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_6_a0/}
}
TY  - JOUR
AU  - N. Ahanjideh
TI  - Thompson's conjecture for some finite simple groups with connected prime graph
JO  - Algebra i logika
PY  - 2012
SP  - 683
EP  - 721
VL  - 51
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_6_a0/
LA  - ru
ID  - AL_2012_51_6_a0
ER  - 
%0 Journal Article
%A N. Ahanjideh
%T Thompson's conjecture for some finite simple groups with connected prime graph
%J Algebra i logika
%D 2012
%P 683-721
%V 51
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_6_a0/
%G ru
%F AL_2012_51_6_a0
N. Ahanjideh. Thompson's conjecture for some finite simple groups with connected prime graph. Algebra i logika, Tome 51 (2012) no. 6, pp. 683-721. http://geodesic.mathdoc.fr/item/AL_2012_51_6_a0/

[1] A. S. Kondratev, “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Matem. sb., 180:6 (1989), 787–797 | MR | Zbl

[2] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[3] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[4] G. Chen, “On Thompson's conjecture”, J. Algebra, 185:1 (1996), 184–193 | DOI | MR | Zbl

[5] M. R. Darafsheh, “Groups with the same non-commuting graph”, Discrete Appl. Math., 157:4 (2009), 833–837 | DOI | MR | Zbl

[6] A. V. Vasil'ev, “On Thompson's Conjecture”, Sib. elektron. matem. izv., 6 (2009), 457–464 | MR

[7] N. Ahanjideh, “On Thompson's conjecture for some finite simple groups”, J. Algebra, 344:1 (2011), 205–228 | DOI | MR | Zbl

[8] A. Iranmanesh, B. Khosravi, “A characterization of $C_2(q)$ where $q>5$”, Commentat. Math. Univ. Carol., 43:1 (2002), 9–21 | MR | Zbl

[9] A. Khosravi, B. Khosravi, “r-Recognizability of $B_n(q)$ and $C_n(q)$ where $n=2^m\ge4$”, J. Pure Appl. Algebra, 199:1–3 (2005), 149–165 | DOI | MR | Zbl

[10] W. Feit, “On large Zsigmondy primes”, Proc. Am. Math. Soc., 102:1 (1988), 29–36 | DOI | MR | Zbl

[11] X. Liu, Y. Wang, H. Wei, “Notes on the length of conjugacy classes of finite groups”, J. Pure Appl. Algebra, 196:1 (2005), 111–117 | DOI | MR | Zbl

[12] N. Ito, “On finite groups with given conjugate types I”, Nagoya Math. J., 6 (1953), 17–28 | MR | Zbl

[13] J. Bi, “A characterization of $L_n(q)$ by the normalizers' orders of their Sylow subgroups”, Acta Math. Sin., New Ser., 11:3 (1995), 300–306 | MR | Zbl

[14] E. I. Khukhro, Nilpotent groups and their automorphisms, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[15] X. Li, “A characterization of the finite simple groups”, J. Algebra, 245:2 (2001), 620–649 | DOI | MR | Zbl

[16] A. V. Zavarnitsine, “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | MR | Zbl

[17] A. V. Vasilev, M. A. Grechkoseeva, “O raspoznavanii po spektru konechnykh prostykh lineinykh grupp nad polyami kharakteristiki 2”, Sib. matem. zh., 46:4 (2005), 749–758 | MR | Zbl

[18] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, Pure Appl. Math., A Wiley-Interscience Publ., John Wiley and Sons, Chichester-New York etc., 1985 | MR | Zbl

[19] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[20] M. W. Liebeck, “On the orders of maximal subgroups of the finite classical groups”, Proc. London Math. Soc., III Ser., 50 (1985), 426–446 | DOI | MR | Zbl

[21] P. Crescenzo, “A diophantine equation which arises in the theory of finite groups”, Adv. Math., 17 (1975), 25–29 | DOI | MR | Zbl

[22] G. Chen, “A new characterization of finite simple groups”, Chin. Sci. Bull., 40:6 (1995), 446–450 | MR | Zbl

[23] G. Y. Chen, “Further reflections on Thompson's conjecture”, J. Algebra, 218:1 (1999), 276–285 | DOI | MR | Zbl

[24] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami eë grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[25] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl