The local structure of groups of triangular automorphisms of relatively free algebras
Algebra i logika, Tome 51 (2012) no. 5, pp. 638-651.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an arbitrary field and $C_n$ a relatively free algebra of rank $n$. In particular, as $C_n$ we may treat a polynomial algebra $P_n$, a free associative algebra $A_n$, or an absolutely free algebra $F_n$. For the algebras $C_n=P_n$, $A_n$, $F_n$, it is proved that every finitely generated subgroup $G$ of a group $TC_n$ of triangular automorphisms admits a faithful matrix representation over a field $K$; hence it is residually finite by Mal’tsev's theorem. For any algebra $C_n$, the triangular automorphism group $TC_n$ is locally soluble, while the unitriangular automorphism group $UC_n$ is locally nilpotent. Consequently, $UC_n$ is local (linear and residually finite). Also it is stated that the width of the commutator subgroup of a finitely generated subgroup $G$ of $UC_n$ can be arbitrarily large with increasing $n$ or transcendence degree of a field $K$ over its prime subfield.
Keywords: relatively free algebra, free associative algebra, absolutely free algebra, group of (uni)triangular automorphisms of algebra, matrix representation, residual finiteness, width of commutator subgroup.
Mots-clés : polynomial algebra
@article{AL_2012_51_5_a4,
     author = {V. A. Roman'kov},
     title = {The local structure of groups of triangular automorphisms of relatively free algebras},
     journal = {Algebra i logika},
     pages = {638--651},
     publisher = {mathdoc},
     volume = {51},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_5_a4/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - The local structure of groups of triangular automorphisms of relatively free algebras
JO  - Algebra i logika
PY  - 2012
SP  - 638
EP  - 651
VL  - 51
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_5_a4/
LA  - ru
ID  - AL_2012_51_5_a4
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T The local structure of groups of triangular automorphisms of relatively free algebras
%J Algebra i logika
%D 2012
%P 638-651
%V 51
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_5_a4/
%G ru
%F AL_2012_51_5_a4
V. A. Roman'kov. The local structure of groups of triangular automorphisms of relatively free algebras. Algebra i logika, Tome 51 (2012) no. 5, pp. 638-651. http://geodesic.mathdoc.fr/item/AL_2012_51_5_a4/

[1] A. J. Czerniakiewicz, “Automorphisms of a free associative algebra of rank 2. I”, Trans. Am. Math. Soc., 160 (1971), 393–401 | MR | Zbl

[2] A. J. Czerniakiewicz, “Automorphisms of a free associative algebra of rank 2. II”, Trans. Am. Math. Soc., 171 (1972), 309–315 | MR | Zbl

[3] H. W. E. Jung, “Uber ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 184 (1942), 161–174 | MR | Zbl

[4] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wiskd., III Ser., 1 (1953), 33–41 | MR | Zbl

[5] L. G. Makar-Limanov, “Avtomorfizmy svobodnoi algebry ot dvukh porozhdayuschikh”, Funkts. analiz i ego pril., 4:3 (1970), 107–108 | MR | Zbl

[6] U. U. Umirbaev, I. P. Shestakov, “Podalgebry i avtomorfizmy kolets mnogochlenov”, Dokl. RAN, 386:6 (2002), 745–748 | MR | Zbl

[7] I. P. Shestakov, U. U. Umirbaev, “The tame and the wild automorphisms of polynomial rings in three variables”, J. Am. Math. Soc., 17:1 (2004), 197–227 | DOI | MR | Zbl

[8] U. U. Umirbaev, Tame and wild automorphisms of polynomial algebras and free associative algebras, Preprint of Max Plank Inst. fur Math., No. 108, MPIM, Bonn, 2004

[9] U. U. Umirbaev, “The Anick automorphism of free associative algebras”, J. Reine Angew. Math., 605 (2007), 165–178 | MR | Zbl

[10] V. A. Romankov, I. V. Chirkov, M. A. Shevelin, “Matrichnaya nepredstavimost grupp avtomorfizmov nekotorykh svobodnykh algebr”, Sib. matem. zh., 45:5 (2004), 1184–1188 | MR | Zbl

[11] Yu. V. Sosnovskii, “Opisanie gipertsentralnogo stroeniya gruppy unitreugolnykh avtomorfizmov algebry mnogochlenov”, Sib. matem. zh., 48:3 (2007), 689–693 | MR | Zbl

[12] V. G. Bardakov, M. V. Neshadim, Yu. V. Sosnovsky, “Groups of triangular automorphisms of a free associative algebra and a polynomial algebra”, J. Algebra, 362 (2012), 201–220 | DOI | MR | Zbl

[13] A. I. Maltsev, “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Matem. sb., 8(50):3 (1940), 405–422 | MR | Zbl

[14] D. Segal, Words: notes on verbal width in groups, London Math. Soc. Lect. Notes Ser., 361, Cambridge Univ. Press, Cambridge, 2009 | MR | Zbl

[15] Kh. S. Allambergenov, V. A. Romankov, “Proizvedeniya kommutatorov v gruppakh”, Dokl. AN UzSSR, 1984, no. 4, 14–15 | MR | Zbl

[16] A. H. Rhemtulla, M. Akhavan-Malayeri, “Commutator length of abelian-by-nilpotent groups”, Glasg. Math. J., 40:1 (1998), 117–121 | DOI | MR | Zbl

[17] P. Hall, Nilpotent groups, Notes of lectures given at the Canadian Mathematical Congress (summer seminar, Univ. Alberta, Edmonton, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR | Zbl

[18] B. A. F. Wehrfritz, “Faithful linear representations of certain free nilpotent groups”, Glasg. Math. J., 37:1 (1995), 33–36 | DOI | MR | Zbl