Automorphisms of finite $p$-groups admitting a~partition
Algebra i logika, Tome 51 (2012) no. 3, pp. 392-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite $p$-group $P$, the following three conditions are equivalent: (a) to have a (proper) partition, that is, to be the union of some proper subgroups with trivial pairwise intersections; (b) to have a proper subgroup all elements outside which have order $p$; (c) to be a semidirect product $P=P_1\rtimes\langle\varphi\rangle$, where $P_1$ is a subgroup of index $p$ and $\varphi$ is its splitting automorphism of order $p$. It is proved that if a finite $p$-group $P$ with a partition admits a soluble automorphism group $A$ of coprime order such that the fixed-point subgroup $C_P(A)$ is soluble of derived length $d$, then $P$ has a maximal subgroup that is nilpotent of class bounded in terms of $p,d$, and $|A|$. The proof is based on a similar result derived by the author and P. V. Shumyatsky for the case where $P$ has exponent $p$ and on the method of elimination of automorphisms by nilpotency, which was earlier developed by the author, in particular, for studying finite $p$-groups with a partition. It is also proved that if a finite $p$-group $P$ with a partition admits an automorphism group $A$ that acts faithfully on $P/H_p(P)$, then the exponent of $P$ is bounded in terms of the exponent of $C_P(A)$. The proof of this result has its basis in the author's positive solution of an analog of the restricted Burnside problem for finite $p$-groups with a splitting automorphism of order $p$. The results mentioned yield corollaries for finite groups admitting a Frobenius group of automorphisms whose kernel is generated by a splitting automorphism of prime order.
Keywords: splitting automorphism, finite $p$-group, exponent, derived length, nilpotency class, Frobenius group of automorphisms.
@article{AL_2012_51_3_a6,
     author = {E. I. Khukhro},
     title = {Automorphisms of finite $p$-groups admitting a~partition},
     journal = {Algebra i logika},
     pages = {392--411},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a6/}
}
TY  - JOUR
AU  - E. I. Khukhro
TI  - Automorphisms of finite $p$-groups admitting a~partition
JO  - Algebra i logika
PY  - 2012
SP  - 392
EP  - 411
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a6/
LA  - ru
ID  - AL_2012_51_3_a6
ER  - 
%0 Journal Article
%A E. I. Khukhro
%T Automorphisms of finite $p$-groups admitting a~partition
%J Algebra i logika
%D 2012
%P 392-411
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a6/
%G ru
%F AL_2012_51_3_a6
E. I. Khukhro. Automorphisms of finite $p$-groups admitting a~partition. Algebra i logika, Tome 51 (2012) no. 3, pp. 392-411. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a6/

[1] V. M. Busarkin, Yu. M. Gorchakov, Konechnye rasscheplyaemye gruppy, Nauka, M., 1968 | MR

[2] E. I. Khukhro, “Nilpotentnost razreshimykh grupp, dopuskayuschikh rasscheplyayuschii avtomorfizm prostogo poryadka”, Algebra i logika, 19:1 (1980), 118–129 | MR | Zbl

[3] E. I. Khukhro, “O lokalno nilpotentnykh gruppakh, dopuskayuschikh rasscheplyayuschii avtomorfizm prostogo poryadka”, Matem. sb., 130(172):1 (1986), 120–127 | MR | Zbl

[4] E. I. Khukhro, Nilpotent groups and their automorphisms, Walter de Gruyter, Berlin, 1993 | MR | Zbl

[5] E. I. Khukhro, P. V. Shumyatskii, “O nepodvizhnykh tochkakh avtomorfizmov kolets Li i lokalno konechnykh grupp”, Algebra i logika, 34:6 (1995), 706–723 | MR | Zbl

[6] E. I. Khukhro, “Nilpotentnost v mnogoobraziyakh grupp s operatorami”, Matem. zametki, 50:2 (1991), 142–145 | MR | Zbl

[7] O. H. Kegel, “Die Nilpotenz der $H_p$-Gruppen”, Math. Z., 75 (1961), 373–376 | DOI | MR | Zbl

[8] D. R. Hughes, J. G. Thompson, “The $H_p$-problem and the structure of $H_p$-groups”, Pac. J. Math., 9 (1959), 1097–1101 | DOI | MR | Zbl

[9] G. Higman, “Groups and rings which have automorphisms without non-trivial fixed elements”, J. Lond. Math. Soc., 32 (1957), 321–334 | DOI | MR | Zbl

[10] V. A. Kreknin, A. I. Kostrikin, “Algebry Li s regulyarnymi avtomorfizmami”, DAN SSSR, 149:2 (1963), 249–251 | MR | Zbl

[11] V. A. Kreknin, “Razreshimost algebr Li s regulyarnymi avtomorfizmami konechnogo perioda”, DAN SSSR, 150:3 (1963), 467–469 | MR | Zbl

[12] E. I. Khukhro, N. Yu. Makarenko, P. Shumyatsky, “Frobenius groups of automorphisms and their fixed points”, Forum Math. (to appear); 2011, arXiv: 1010.0343

[13] N. Yu. Makarenko, E. I. Khukhro, P. Shumyatskii, “Nepodvizhnye tochki frobeniusovykh grupp avtomorfizmov”, Dokl. RAN, 437:1 (2011), 20–23 | MR | Zbl

[14] E. I. Khukhro, “Graded Lie rings with many commuting components and an application to 2-Frobenius groups”, Bull. Lond. Math. Soc., 40:5 (2008), 907–912 | DOI | MR | Zbl

[15] N. Yu. Makarenko, P. Shumyatsky, “Frobenius groups as groups of automorphisms”, Proc. Am. Math. Soc., 138:10 (2010), 3425–3436 | DOI | MR | Zbl

[16] E. I. Khukhro, “Nepodvizhnye tochki dopolnenii frobeniusovykh grupp avtomorfizmov”, Sib. matem. zh., 51:3 (2010), 694–699 | MR | Zbl

[17] E. I. Khukhro, “Nilpotentnaya dlina konechnoi gruppy, dopuskayuschei frobeniusovu gruppu avtomorfizmov s yadrom bez nepodvizhnykh tochek”, Algebra i logika, 49:6 (2010), 819–833 | MR

[18] P. Shumyatsky, “On the exponent of a finite group with an automorphism group of order twelve”, J. Algebra, 331:1 (2011), 482–489 | DOI | MR | Zbl

[19] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 17-e izd., In-t matem. SO RAN, Novosibirsk, 2010 http://www.math.nsc.ru/~alglog/17kt.pdf

[20] E. I. Khukhro, “O konechnykh $p$-gruppakh, ne udovletvoryayuschikh gipoteze Khyuza”, Sib. matem. zh., 35:1 (1994), 221–227 | MR | Zbl

[21] E. I. Khukhro, “O probleme Khyuza dlya konechnykh $p$-grupp”, Algebra i logika, 26:5 (1987), 642–646 | MR | Zbl | Zbl