Countably categorical theories
Algebra i logika, Tome 51 (2012) no. 3, pp. 358-384
Voir la notice de l'article provenant de la source Math-Net.Ru
A series of countably categorical theories are constructed based on the Fraisse method. In particular, an example of a decidable countably categorical theory of finite signature is given for which no decidable model has an infinite computable set of order-indiscernible elements. Such a theory is used to refute Ershov's conjecture on the representability of models of $c$-simple theories over linear orders.
Keywords:
countably categorical theory, decidable theory, decidable model, linear order.
Mots-clés : Fraisse method
Mots-clés : Fraisse method
@article{AL_2012_51_3_a4,
author = {V. G. Puzarenko},
title = {Countably categorical theories},
journal = {Algebra i logika},
pages = {358--384},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/}
}
V. G. Puzarenko. Countably categorical theories. Algebra i logika, Tome 51 (2012) no. 3, pp. 358-384. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/