Mots-clés : Fraisse method
@article{AL_2012_51_3_a4,
author = {V. G. Puzarenko},
title = {Countably categorical theories},
journal = {Algebra i logika},
pages = {358--384},
year = {2012},
volume = {51},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/}
}
V. G. Puzarenko. Countably categorical theories. Algebra i logika, Tome 51 (2012) no. 3, pp. 358-384. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/
[1] Yu. L. Ershov, “$\Sigma$-definability of algebraic systems”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, Recursive model theory, eds. Yu. L. Ershov et al., Elsevier, Amsterdam, 1998, 235–260 | DOI | MR | Zbl
[2] Yu. L. Ershov, V. G. Puzarenko, A. I. Stukachev, “$\mathbb{HF}$-Computability”, Computability in context. Computation and logic in the real world, eds. S. B. Cooper, A. Sorbi, World Scientific, London, 2011, 169–242 | DOI | MR | Zbl
[3] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[4] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[5] B. F. Csima, V. S. Harizanov, R. Miller, A. Montalban, “Computability of Fraïsse limits”, J. Symb. Log., 76:1 (2011), 66–93 | DOI | MR | Zbl
[6] H. A. Kierstead, J. B. Remmel, “Indiscernibles and decidable models”, J. Symb. Log., 48:1 (1983), 21–32 | DOI | MR | Zbl
[7] V. G. Puzarenko, “Obobschennye numeratsii i opredelimost polya $\mathbb R$ v dopustimykh mnozhestvakh”, Vestnik NGU. Ser. matem., mekh., inform., 3:2 (2003), 107–117
[8] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[9] V. G. Puzarenko, “O razreshimykh vychislimykh $\mathbb A$-numeratsiyakh”, Algebra i logika, 41:5 (2002), 568–584 | MR | Zbl
[10] A. I. Stukachev, “$\Sigma$-opredelimost v nasledstvenno konechnykh nadstroikakh i pary modelei”, Algebra i logika, 43:4 (2004), 459–481 | MR | Zbl