Countably categorical theories
Algebra i logika, Tome 51 (2012) no. 3, pp. 358-384

Voir la notice de l'article provenant de la source Math-Net.Ru

A series of countably categorical theories are constructed based on the Fraisse method. In particular, an example of a decidable countably categorical theory of finite signature is given for which no decidable model has an infinite computable set of order-indiscernible elements. Such a theory is used to refute Ershov's conjecture on the representability of models of $c$-simple theories over linear orders.
Keywords: countably categorical theory, decidable theory, decidable model, linear order.
Mots-clés : Fraisse method
@article{AL_2012_51_3_a4,
     author = {V. G. Puzarenko},
     title = {Countably categorical theories},
     journal = {Algebra i logika},
     pages = {358--384},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - Countably categorical theories
JO  - Algebra i logika
PY  - 2012
SP  - 358
EP  - 384
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/
LA  - ru
ID  - AL_2012_51_3_a4
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T Countably categorical theories
%J Algebra i logika
%D 2012
%P 358-384
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/
%G ru
%F AL_2012_51_3_a4
V. G. Puzarenko. Countably categorical theories. Algebra i logika, Tome 51 (2012) no. 3, pp. 358-384. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a4/