Characterizable classes of lattices
Algebra i logika, Tome 51 (2012) no. 3, pp. 347-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at the concept of a characterizable class of systems. It is proved that there exist characterizable varieties of lattices whose join in the lattice of all lattice varieties is not a characterizable variety. We point out two finitely characterizable lattice quasivarieties, which are not varieties, whose meet in the lattice of lattice quasivarieties is a variety. Also an example of a characterizable locally finite lattice variety is constructed.
Keywords: characterizable class of lattices, variety.
@article{AL_2012_51_3_a3,
     author = {Zh. A. Omarov},
     title = {Characterizable classes of lattices},
     journal = {Algebra i logika},
     pages = {347--357},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a3/}
}
TY  - JOUR
AU  - Zh. A. Omarov
TI  - Characterizable classes of lattices
JO  - Algebra i logika
PY  - 2012
SP  - 347
EP  - 357
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a3/
LA  - ru
ID  - AL_2012_51_3_a3
ER  - 
%0 Journal Article
%A Zh. A. Omarov
%T Characterizable classes of lattices
%J Algebra i logika
%D 2012
%P 347-357
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a3/
%G ru
%F AL_2012_51_3_a3
Zh. A. Omarov. Characterizable classes of lattices. Algebra i logika, Tome 51 (2012) no. 3, pp. 347-357. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a3/

[1] G. Grettser, Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[2] R. Dedekind, “Über die von drei Moduln erzeugte Dualgruppe”, Math. Ann., 53 (1900), 371–403 | DOI | MR | Zbl

[3] G. Birkhoff, “On the structure of abstract algebras”, Proc. Cambridge Philos. Soc., 31 (1935), 433–454 | DOI | Zbl

[4] H. Löwig, “On the importance of the relation $[(A,B)(A,C)]=(A,[(B,C)(C,A)\cdot(A,B)])$ between three elements of a structure”, Ann. Math. (2), 44 (1943), 573–579 | DOI | MR

[5] E. Gedeonova, “Jordan–Hölder theorem for lines”, Acta Fac. Rer. natur. Univ. Comenian. Math., Mimor. Cislo, 1971, 23–24 | MR | Zbl

[6] Zh. A. Omarov, “O mnogoobrazii reshëtok, opredelennom tozhdestvom Ikbalunnisy”, Algebra i logika, 27:3 (1988), 305–315 | MR | Zbl

[7] V. I. Igoshin, “Kharakterizuemye mnogoobraziya reshëtok”, Uporyadochennye mnozhestva i reshëtki, Vyp. 1, izd-vo SGU, Saratov, 1971, 22–30 | MR

[8] V. A. Gorbunov, A. M. Nurakunov, Zh. A. Omarov, “O chisle nekharakterizuemykh mnogoobrazii reshëtok”, Tr. 10-oi Vsesoyuz. konf. matem. logike, Alma-Ata, 1990, 46–47

[9] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[10] Zh. A. Omarov, “O peresechenii nekharakterizuemykh mnogoobrazii reshëtok”, Algebra i logika, 29:3 (1990), 339–344 | MR | Zbl

[11] A. Day, “Splitting algebras and a weak notion of projectivity”, Algebra Univers., 5 (1975), 153–162 | DOI | MR | Zbl

[12] B. Jónsson, I. Rival, “Lattice varieties covering the smallest non-modular variety”, Pac. J. Math., 82 (1979), 463–478 | DOI | MR | Zbl

[13] J. B. Nation, “Lattice varieties covering $\mathbf V(L_1)$”, Algebra Univers., 23 (1986), 132–166 | DOI | MR | Zbl

[14] B. Jónsson, “Equational classes of lattices”, Math. Scand., 22:2 (1968), 187–196 | MR | Zbl