Twisted conjugacy classes in general and special linear groups
Algebra i logika, Tome 51 (2012) no. 3, pp. 331-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider twisted conjugacy classes and the $R_\infty$-property for classical linear groups. In particular, it is stated that the general linear group $\mathrm{GL}_n(K)$ and the special linear group $\mathrm{SL}_n(K)$, for $n\ge3$, possess the $R_\infty$-property if either $K$ is an infinite integral domain with trivial automorphism group, or $K$ is an integral domain containing a subring of integers, whose automorphism group $\operatorname{Aut}(K)$ is finite. By an integral domain we mean a commutative ring with identity which has no zero divisors.
Keywords: linear group, twisted conjugacy classes, integral domain.
Mots-clés : automorphism group
@article{AL_2012_51_3_a2,
     author = {T. R. Nasybullov},
     title = {Twisted conjugacy classes in general and special linear groups},
     journal = {Algebra i logika},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a2/}
}
TY  - JOUR
AU  - T. R. Nasybullov
TI  - Twisted conjugacy classes in general and special linear groups
JO  - Algebra i logika
PY  - 2012
SP  - 331
EP  - 346
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a2/
LA  - ru
ID  - AL_2012_51_3_a2
ER  - 
%0 Journal Article
%A T. R. Nasybullov
%T Twisted conjugacy classes in general and special linear groups
%J Algebra i logika
%D 2012
%P 331-346
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a2/
%G ru
%F AL_2012_51_3_a2
T. R. Nasybullov. Twisted conjugacy classes in general and special linear groups. Algebra i logika, Tome 51 (2012) no. 3, pp. 331-346. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a2/

[1] A. Fel'shtyn, R. Hill, “The Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion”, K-Theory, 8:4 (1994), 367–393 | DOI | MR

[2] A. L. Felshtyn, “Chislo Raidemaistera lyubogo avtomorfizma gromovskoi giperbolicheskoi gruppy beskonechno”, Zap. nauchn. sem. POMI, 279, 2001, 229–240 | MR | Zbl

[3] A. Fel'shtyn, D. L. Gonçalves, “Reidemeister number of any automorphism of a Baumslag–Solitar group is infinite”, Geometry and dynamics of groups and spaces, In memory of Alexander Reznikov. Partly based on the int. conf. on geometry and dynamics of groups and spaces in memory of Alexander Reznikov (Bonn, Germany, September 22–29, 2006), Progress in Math., 265, eds. M. Kapranov et al., Birkhauser, Basel, 2008, 399–414 | DOI | MR

[4] A. Fel'shtyn, D. L. Gonçalves, “Twisted conjugacy classes in symplectic groups, mapping class groups and braid groups”, with an appendix written jointly with F. Dahmani, Geom. Dedicata, 146 (2010), 211–223 | DOI | MR

[5] C. Bleak, A. Fel'shtyn, D. L. Gonçalves, “Twisted conjugacy classes in R. Thompson's group $F$”, Pac. J. Math., 238:1 (2008), 1–6 | DOI | MR | Zbl

[6] A. Fel'shtyn, F. Indukaev, E. Troitsky, “Twisted Burnside theorem for two-step torsion-free nilpotent groups”, $C^*$-algebras and elliptic theory, Sel. papers int. conf. (Bȩdlewo, Poland, January 2006), v. II, Trends Math., eds. D. Burghelea et al., Birkhauser, Basel, 2008, 87–101 | DOI | MR

[7] D. Gonçalves, P. Wong, “Twisted conjugacy classes in nilpotent groups”, J. Reine Angew. Math., 633 (2009), 11–27 | MR | Zbl

[8] D. Gonçalves, P. Wong, “Twisted conjugacy classes in wreath products”, Int. J. Algebra Comput., 16:5 (2006), 875–886 | DOI | MR | Zbl

[9] V. Roman'kov, “Twisted conjugacy classes in nilpotent groups”, J. Pure Appl. Algebra, 215:4 (2011), 664–671 | DOI | MR

[10] T. Mubeena, P. Sankaran, Twisted conjugacy classes in abelian extensions of certain linear groups, arXiv: 1111.6181[math.GR]

[11] O. T. O'Meara, “The automorphisms of the linear groups over any integral domain”, J. reine Angew. Math., 223 (1966), 56–100 | MR