Groups with given properties of finite subgroups
Algebra i logika, Tome 51 (2012) no. 3, pp. 321-330

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that in every finite even order subgroup $F$ of a periodic group $G$, the equality $[u,x]^2=1$ holds for any involution $u$ of $F$ and for an arbitrary element $x$ of $F$. Then the subgroup $I$ generated by all involutions in $G$ is locally finite and is a $2$-group. In addition, the normal closure of every subgroup of order $2$ in $G$ is commutative.
Keywords: periodic group, finite group, locally finite group, involution.
@article{AL_2012_51_3_a1,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Groups with given properties of finite subgroups},
     journal = {Algebra i logika},
     pages = {321--330},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Groups with given properties of finite subgroups
JO  - Algebra i logika
PY  - 2012
SP  - 321
EP  - 330
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/
LA  - ru
ID  - AL_2012_51_3_a1
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Groups with given properties of finite subgroups
%J Algebra i logika
%D 2012
%P 321-330
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/
%G ru
%F AL_2012_51_3_a1
D. V. Lytkina; V. D. Mazurov. Groups with given properties of finite subgroups. Algebra i logika, Tome 51 (2012) no. 3, pp. 321-330. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/