Groups with given properties of finite subgroups
Algebra i logika, Tome 51 (2012) no. 3, pp. 321-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that in every finite even order subgroup $F$ of a periodic group $G$, the equality $[u,x]^2=1$ holds for any involution $u$ of $F$ and for an arbitrary element $x$ of $F$. Then the subgroup $I$ generated by all involutions in $G$ is locally finite and is a $2$-group. In addition, the normal closure of every subgroup of order $2$ in $G$ is commutative.
Keywords: periodic group, finite group, locally finite group, involution.
@article{AL_2012_51_3_a1,
     author = {D. V. Lytkina and V. D. Mazurov},
     title = {Groups with given properties of finite subgroups},
     journal = {Algebra i logika},
     pages = {321--330},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Groups with given properties of finite subgroups
JO  - Algebra i logika
PY  - 2012
SP  - 321
EP  - 330
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/
LA  - ru
ID  - AL_2012_51_3_a1
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A V. D. Mazurov
%T Groups with given properties of finite subgroups
%J Algebra i logika
%D 2012
%P 321-330
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/
%G ru
%F AL_2012_51_3_a1
D. V. Lytkina; V. D. Mazurov. Groups with given properties of finite subgroups. Algebra i logika, Tome 51 (2012) no. 3, pp. 321-330. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a1/

[1] S. I. Adyan, “O podgruppakh svobodnykh periodicheskikh grupp nechetnogo pokazatelya”, Tr. MIAN, 112, Nauka, M., 1971, 64–72 | MR | Zbl

[2] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[3] D. V. Lytkina, “O 2-gruppakh, konechnye podgruppy kotorykh obladayut zadannymi svoistvami”, Vladikavk. matem. zh., 13:4 (2011), 35–39 | MR

[4] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta, ser. matem., 10, 1940, 166–170 | MR | Zbl

[5] The GAP Group, GAP – Groups, algorithms, and programming, Vers. 4.4.12, , 2008 http://www.gap-system.org

[6] G. Havas, C. Ramsay, “On proofs in finitely presented groups”, Groups St. Andrews 2005, Sel. papers conf. (St. Andrews, UK, July 30 – August 6, 2005), v. II, London Math. Soc. Lect. Note Ser., 340, eds. C. M. Campbell et al., Cambridge Univ. Press, Cambridge, 2007, 457–474 | MR | Zbl

[7] I. D. Macdonald, “On certain varieties of groups”, Math. Z., 76 (1961), 270–282 | DOI | MR | Zbl